本文综述了工业中广泛应用的多输入多输出(MIMO)系统解耦控制方法,涵盖耦合交互分析与解耦器设计两大类。重点介绍了相对增益阵列(RGA)、直接奈奎斯特阵列(DNA)等交互分析工具,以及静态、动态解耦策略,包括理想、简化与逆解耦技术。同时探讨了针对时滞、非线性、不确定性等复杂系统的特殊解耦方法,如内模控制、模型预测控制与智能解耦算法。文章还总结了各类方法的适用场景、优缺点及实现难点,为不同背景的研究者与工程师提供选型指导。尽管解耦是提升MIMO系统性能的关键手段,但在某些应用中(如飞行器控制)耦合本身可能有益,因此是否解耦需依据具体需求判断。
2025-10-27 17:15:51 1.61MB MIMO 解耦控制 工业应用
1
电机控制系统中电流环的复矢量解耦控制方法及其C代码实现。首先解释了为何在高速工况下传统的PI调节器会产生dq轴耦合的问题,然后引入复矢量解耦控制来解决这一问题。文中提供了具体的解耦补偿计算公式以及离散化的实现方式,包括关键的PI控制器更新函数和完整的电流环控制流程。此外,还强调了几个重要的工程实现细节,如解耦量注入的位置、补偿量的实时计算以及控制周期与PWM载波的同步。最后,通过实验数据展示了该方法的有效性,将突加负载时d轴电流波动从传统方法的±15%降低到了±3%以内。 适合人群:从事电机控制领域的工程师和技术人员,尤其是对电流环控制有研究兴趣的人群。 使用场景及目标:适用于需要提高电机控制系统响应速度和稳定性的场合,特别是那些希望深入了解并掌握复矢量解耦控制方法及其实际编码实现的技术人员。 其他说明:建议读者结合具体的电机控制教材或相关技术文档进行深入学习,以便更好地理解和调整参数设置。
2025-10-21 12:49:19 669KB
1
内容概要:本文详细介绍了电机控制系统中电流环的复矢量解耦控制方法及其C代码实现。首先解释了为什么传统的PI调节器在高速工况下会产生dq轴耦合的问题,然后提出了复矢量解耦控制作为解决方案。文中给出了具体的解耦补偿计算公式以及离散化的实现方式,包括关键的PI控制器的设计和抗饱和处理。最后展示了将解耦和PI控制相结合的完整方案,并指出了一些重要的实战细节,如解耦量注入的位置、补偿量的计算依据和控制周期的同步。实验结果显示,这种方法可以显著提高系统的动态性能,使d轴电流波动大幅减小。 适合人群:从事电机控制领域的工程师和技术人员,尤其是对电流环控制有研究兴趣的人士。 使用场景及目标:适用于需要优化电机控制系统动态性能的实际工程项目,旨在解决传统PI调节器在高速工况下的不足,提供一种有效的解耦控制方法。 其他说明:建议读者结合具体的电机控制教材或相关技术文档进行深入学习,以便更好地理解和应用所介绍的技术。
2025-10-21 12:45:28 1.04MB
1
MMC整流器平均值模型simulink仿真,19电平,采用交流电流内环,直流电压外环控制,双二阶广义积分器锁相环,PI解耦环流抑制器,调制方式为最近电平逼近调制,完美运行。 波形一二为直流侧电压电流,波形三四分别为主控制器及环流抑制器输出调制信号。 本文所涉及的MMC(模块化多电平转换器)整流器平均值模型Simulink仿真研究,是电力电子领域中的一个重要课题,其研究内容具有较高的技术价值和实际应用前景。 MMC整流器作为一种新型的高压直流输电技术,以其模块化、灵活性、高效率等优点,在电力系统中扮演着越来越重要的角色。本文通过构建19电平的MMC整流器平均值模型,在Simulink环境下进行仿真研究,探讨了交流电流内环与直流电压外环的控制策略,以及双二阶广义积分器锁相环和PI解耦环流抑制器的应用。 交流电流内环控制是保证整流器输出电流稳定性的重要环节,它能够快速响应外部负载变化,实现对电流的精确控制。而直流电压外环控制则关注的是维持直流侧电压的稳定,这对于连接电网和直流负载之间起到关键的稳压作用。两者共同作用,形成了一个多环反馈控制体系,为保证整流器的稳定运行提供了坚实的基础。 双二阶广义积分器锁相环(DSOGI-PLL)技术的应用,解决了在复杂电网环境下,对电网电压频率和相位的准确跟踪问题。DSOGI-PLL具有快速响应和高精度的特点,使得整流器能够在电网电压出现畸变或不平衡的情况下,仍然保持较好的相位跟踪性能。 再者,PI解耦环流抑制器的引入,有效地抑制了模块间产生的环流。环流的出现会对MMC整流器的性能造成负面影响,甚至可能导致设备损坏。PI解耦控制策略能够减少环流的波动,提高整体系统的运行效率和稳定性。 此外,文中提到的最近电平逼近调制策略(NLM),是一种高效的调制技术,它能够将参考信号与最近的电平进行匹配,以减少开关次数和开关损耗,提高整流器的效率。 仿真结果显示,通过上述控制策略和调制方法,所构建的19电平MMC整流器模型能够在Simulink环境下实现稳定和精确的运行。波形一二显示了直流侧电压和电流的输出情况,而波形三四则分别代表了主控制器和环流抑制器输出的调制信号。这表明模型在控制策略的辅助下,能够对电流动态进行有效的调整,并实时反馈至调制系统,达到预期的控制效果。 本文所列的文件名列表暗示了该研究内容的丰富性和多维度,如“整流器平均值模型仿真利用交流电流内环和.doc”等,显示了该研究不仅包含了理论分析和仿真模型的设计,还可能涵盖了相关的技术文档和实验结果。这些文件为深入理解MMC整流器的工作原理、控制策略及其在实际中的应用提供了宝贵的资源。 MMC整流器在未来的电网中将会扮演更加关键的角色,本文的研究对于推动该技术的发展具有重要的理论和实践意义。通过先进的控制策略和仿真技术,可以进一步提升MMC整流器的性能,为电力系统的稳定和高效运行提供有力的技术支持。
2025-10-16 21:26:54 959KB
1
内容概要:本文详细介绍了三相异步电机矢量控制调速系统的Simulink仿真及其MATLAB建模方法。首先,文章解释了三相异步电机的基本特点以及矢量控制技术的优势,尤其是磁场定向控制(FOC)。接下来,逐步讲解了如何在Simulink中搭建仿真模型,包括电源模块、异步电机模块的参数设置,以及坐标变换(如Clark变换和Park变换)的具体实现。文中还探讨了电流环控制、矢量解耦控制、PI调节器参数设置、SVPWM模块的死区补偿、转速观测器的设计等关键技术细节。通过不断调整模型参数,可以深入研究系统的性能,为实际电机控制应用提供理论支持和实践指导。 适合人群:电机控制系统工程师、自动化专业学生、科研人员。 使用场景及目标:适用于希望深入了解三相异步电机矢量控制原理和技术实现的研究者和工程师。目标是掌握Simulink仿真的具体操作步骤,理解各个模块的功能和相互关系,从而能够在实际项目中应用这些技术和方法。 其他说明:文章不仅提供了详细的理论背景介绍,还包括了许多实用的代码片段和调试技巧,帮助读者更好地理解和应用矢量控制技术。
2025-10-10 10:02:56 16.63MB
1
电源分配网络的阻抗在指定频段内要求足够低。两个不同容值的并联去耦电容可以降低PDN的阻抗,但是其等效特性阻抗所产生的反谐振点也会引入到PDN阻抗中,该点可能会超过目标阻抗,所以需要合理地选取去耦电容器,尽可能降低该点阻抗。从并联电容的等效电路模型出发,推导并验证了电容参数与反谐振点频率、反谐振点阻抗的数学模型;随后通过实例将该模型应用于基于目标阻抗的设计方法中,证明了该模型实施的直观性和有效性。
2025-08-07 23:22:22 40KB 去耦电容 特性阻抗 反谐振点
1
在自动控制领域,模型预测控制(Model Predictive Control,简称MPC)是一种广泛应用于工业过程控制的方法。它利用数学模型预测未来一段时间内的系统行为,并通过优化计算,确定在预测时间范围内应该采取的控制动作。由于MPC能够直接处理系统的约束条件,因此特别适合于多变量、多约束、以及动态响应复杂的过程控制。 文章的标题指出了采用了一种改进的基于解耦结构的状态空间MPC设计,具有改进的性能。解耦控制是指在多变量控制系统中,为了消除各个控制变量之间的相互影响,而采取的控制策略。这通常涉及到对系统模型进行处理,使得各个控制回路之间相互独立,从而简化控制结构,提高控制品质。在多变量过程中,零极点取消是一个常见问题,它可能影响系统的控制性能和稳定性。 文章内容提到了传统的状态空间MPC存在一些问题,例如观测器动态通常假定要比反馈控制器快,这在实际中可能导致数值计算上的困难。此外,还提到了模型预测控制的发展历程,从有限脉冲响应(Finite Impulse Response,FIR)或阶跃响应模型为基础的MPC(如动态矩阵控制 Dynamic Matrix Control, DMC),到传递函数模型为基础的MPC(如广义预测控制 Generalized Predictive Control, GPC),以及最近的状态空间模型为基础的MPC(State Space Model based MPC, SSMPC),后者近年来受到了显著的研究关注。 文章提出了一种新的改进的解耦结构,它避免了零极点取消问题,并通过调节额外的参数确保了可行性。在此基础上,文章进一步提出了一种单输入-单输出(SISO)设计的模型预测控制,它采用了一种新的状态空间实现方法,用于提高控制性能。通过这种新的设计模型,可以直接考虑过程状态变量的动态特性。文章还分析了所提出的解耦器性质、闭环控制性能、与传统状态空间MPC的关系以及鲁棒稳定性问题。 为了评价所提出的MPC设计的有效性,作者通过与近期文献中典型的过程进行比较,评估了该设计的效率,与一种典型的非最小状态空间MPC进行了对比。 文章最后提到,该研究得到了如下支持:杭州电子科技大学信息与控制研究所、香港科技大学化学与生物分子工程系。文章中还给出了有关文章历史的信息,如接收日期、修订日期和接受日期,以及关键字包括模型预测控制、状态空间模型、闭环控制性能和离散时间过程等。 本研究论文强调了在多变量控制系统中使用改进的解耦结构和状态空间MPC设计的重要性。通过这种设计,能够有效避免一些传统MPC在实施过程中遇到的困难,如零极点取消、控制可行性问题以及数值计算难题,并通过新设计的模型直接考虑过程状态变量的动态特性,从而提高整个控制系统的性能和稳定性。通过对典型过程的研究,这一新的MPC设计在实际应用中的效果得到了验证,这将有助于未来在工业过程控制等领域中的应用推广。
2025-08-07 17:05:08 1.13MB 研究论文
1
Comsol微环谐振腔的环形波导耦合技术与波束包络及波动光学模块的对比研究,探索Comsol微环谐振腔与环形波导耦合技术:波束包络与波动光学模块的对比研究,Comsol微环谐振腔,环形波导耦和。 对比波束包络和波动光学两个不同模块。 ,Comsol微环谐振腔; 环形波导耦合; 波束包络; 波动光学; 对比分析。,Comsol微环谐振腔对比波束包络与波动光学模块 在光学与微电子领域,微环谐振腔和环形波导耦合技术是实现高效光学通信与信息处理的关键技术之一。微环谐振腔因其尺寸微小、品质因数高以及易于集成等优点,在光子集成电路中具有广泛的应用前景。环形波导作为一种有效的波导结构,能够有效地引导和控制光波在微小空间中的传播,其与微环谐振腔的耦合技术成为了研究的热点。 波束包络方法是一种近似的数学模型,它通过模拟波束的传播行为来预测光波在波导中的传播特性。与传统的波动光学方法相比,波束包络方法通常具有计算复杂度低、分析速度快等优势,适用于初步设计与快速分析。波动光学方法则更加精细,它基于麦克斯韦方程组对电磁波的传播进行完整的描述,因此能够提供更为准确和详尽的波导特性,但计算成本相对较高。 本研究的目的是对比分析COMSOL Multiphysics仿真软件中两种不同模块——波束包络和波动光学模块在模拟微环谐振腔与环形波导耦合时的准确性与效率。通过对比,研究者能够更好地了解不同模块在处理类似问题时的优缺点,从而为实际工程应用提供理论依据和技术指导。例如,在进行初步设计时,波束包络方法可能是一个更高效的选择,而在对设计结果进行精确验证时,则可能需要应用波动光学方法。 COMSOL Multiphysics是一款多物理场耦合仿真软件,它允许用户对光学、电磁学、流体力学等多个物理场进行模拟分析。在微环谐振腔与环形波导耦合的仿真研究中,利用该软件可以模拟光波在微环谐振腔与环形波导之间的耦合过程,以及在此过程中产生的诸如谐振频率、Q因子、场分布等重要参数。 本研究的深入探讨,不仅有助于推动微环谐振腔和环形波导耦合技术的发展,还能够促进光子集成电路领域相关技术的革新与进步。通过对微环谐振腔与环形波导耦合技术的深入解析,以及波束包络与波动光学模块的对比分析,可以为研究人员和工程师提供一个更加全面、精确的设计和分析工具,从而加速新型光学器件的开发和优化。 此外,随着集成光学技术的快速发展,微环谐振腔与环形波导耦合的研究不仅限于基础理论探索,还包括其在实际应用中的表现。诸如在光通信、光学传感、光学信号处理等领域的应用,都对微环谐振腔的设计提出了新的挑战和要求。因此,本研究不仅具有重要的理论价值,同时也具有显著的实际应用意义。 本研究将通过对COMSOL Multiphysics软件中波束包络和波动光学模块的对比分析,深入探索微环谐振腔与环形波导耦合技术,为相关领域提供更加精确的设计方案和技术支持。通过这项研究,可以加深我们对微环谐振腔和环形波导耦合技术的理解,推动光学和微电子技术的发展。
2025-07-14 10:23:03 184KB sass
1
内容概要:本文介绍了基于STM32F103VET6控制器的硬件方案,该方案集成了以太网W5500、CAN总线、多路光耦输入/输出、继电器/可控硅驱动等功能。同时,详细解析了FX3U V10.0版源码,涵盖新增功能如编程口协议和Modbus RTU协议支持,以及大量新指令的引入。文章还讨论了硬件配置、软件源码解析、代码分析与实践等方面的内容。 适合人群:嵌入式系统开发人员、硬件工程师、自动化控制系统设计师。 使用场景及目标:适用于汽车、工业控制、智能家居等领域,旨在帮助开发者理解和实现复杂控制逻辑,提高系统的智能化和灵活性。 其他说明:文中提到的源码和硬件方案不仅提供了详细的注释和丰富的指令,还展示了如何通过不同通信协议实现设备间的高效数据交互。
2025-07-03 22:20:18 2.38MB
1
LCL滤波三相并网逆变器:恒电流闭环解耦控制与SVPWM调制策略的仿真模型及性能分析【附设计文档与详细参数报告】,LCL滤波三相并网逆变器仿真报告,LCL滤波三相并网逆变器仿真模型 【附设计文档】 [1]控制策略:采用恒电流闭环解耦控制,SVPWM调制策略,控制电流给定值就可以控制功率 [2]仿真结果:并网电流总谐波畸变率 THD=2.44%,符合行业标准 THD<5%。 并网电流峰值为 10.22V,与设定 的并网电流参考值偏差为 0.167%,效果较好 [3]设计报告:包括LCL滤波器约束条件分析、参数设计、闭环控制系统设计、仿真分析 ,LCL滤波;三相并网逆变器;恒电流闭环解耦控制;SVPWM调制策略;并网电流总谐波畸变率;仿真模型,LCL滤波三相并网逆变器:高效仿真模型与控制策略设计
2025-06-20 17:07:03 3.16MB xbox
1