内容概要:本文详细介绍了利用MATLAB对血细胞图像进行处理的完整流程,包括去噪、增强、二值化以及形态学分割。首先,采用中值滤波去除图像中的椒盐噪声并保持细胞边缘清晰;接着,通过自适应直方图均衡化增强图像对比度;然后,应用Otsu法确定全局阈值并适当调整以实现二值化;最后,利用形态学操作(如开运算、填充孔洞)将血细胞分割为独立的连通域,并对其进行标记和计数。整个过程不仅展示了具体的MATLAB代码实现,还提供了实用的操作技巧和注意事项。 适合人群:从事医学图像处理的研究人员和技术人员,尤其是对血细胞图像分析感兴趣的初学者。 使用场景及目标:适用于需要对血细胞图像进行预处理和特征提取的应用场合,如血液病诊断辅助系统。目标是提高图像质量,便于后续的定量分析和识别。 阅读建议:读者可以跟随文中提供的步骤,在自己的环境中重现实验结果,同时注意作者提到的一些常见错误及其解决方案。
2025-05-14 21:56:32 7.63MB
1
MATLAB程序实现图像增强、图像去噪等图像处理。
1
图像去噪增强算法的研究.pdf
2022-07-11 14:13:05 5.42MB 文档资料
用于图像融合/图像去噪/图像增强的数据集以及使用平均法和最大值法进行图像融合的两个 MATLAB 文件
2022-05-12 17:44:13 19.54MB matlab
1
红外图像去噪增强算法近五年的论文和代码合集,经过整理,每种算法各分文件夹整理,方便学习借鉴
2022-04-29 21:06:24 170.08MB 算法 代码合集 论文合集
本文提出了一种基于非下采样Contourlet变换与非线性各向异性扩散的方法进行含噪图像的去噪和增强。首先对含噪图像进行非下采样Contourlet分解,对每个分解层的各个子带进行非线性收缩和拉伸,以达到抑制噪声和增强图像特征的目的。然后,对去噪增强后图像的Contourlet小系数进行空间域的非线性各向异性扩散,以去除由于进行非下采样Contourlet去噪所造成的为伪Gibbs现象和 side-band效应。实验结果表明,本文方法相比于无扩散的Wavelet和Contourlet方法相比,不仅对图像进行了去噪和增强,而且有效的抑制了伪Gibbs现象和 side-band效应。
1
遥感影像的变化检测是遥感应用研究的热点之一,在城市变化、环境监测、土地利用以及基础地理数据库更新等领域中有着广泛的应用.变化检测是从不同时期的遥感数据中定量分析和确定地表变化的特征和过程,具体工作是对同一地区不同时相的两幅或多幅图像进行分析,检测出其中的变化部分与未变化部分.本文提出了基于堆栈降噪自动编码器网络的变化检测方法,将应用于SAR (Synthetic Aperture Radar,合成孔径雷达)卫星图像变化检测的深度学习算法改进,使之适用于高分光学卫星图像,然后在孪生网络的结构上进行改进,提出了基于分支卷积神经网络的变化检测方法,最后设计算法去除了阴影干扰和噪声等伪变化,并在高分二号卫星中宁夏地区的实际生产数据影像上进行了测试,取得了不错的效果.
1
matlab代码,基于PCNN的图像边缘提取、图像分割、图像去噪、图像增强
1
基于matlab的dicom、nii文件读取,去噪增强处理,里面包含了三张dicom的图像,三张nii的图像,需要的同学自己取,稍微收点积分意思意思
2021-10-19 15:16:43 1.76MB matlab dicom nii
1
低通滤波实现图像增强和小波滤波器去噪增强变换,基于小波变换的图像去噪,matlab源码.zip
2021-10-12 11:02:05 105KB