Matlab仿真研究OFDM与OTFS在衰落信道下的误比特率性能:包括保护间隔、信道均衡与多种编码技术,matlab调制解调 OFDM OTFS 16qam qpsk ldpc turbo在高斯白噪声,频率选择性衰落信道下的误比特率性能仿真,matlab代码 OFDM simulink 包括添加保护间隔(cp),信道均衡(ZF MMSE MRC MA LMSEE) 代码每行都有注释,适用于学习,附带仿真说明,完全不用担心看不懂 ,关键词: matlab调制解调; OFDM; OTFS; 16qam; qpsk; ldpc; turbo码; 误比特率性能仿真; 保护间隔(cp); 信道均衡(ZF, MMSE, MRC, MA, LMSEE); simulink; 代码注释; 仿真说明。,"MATLAB仿真:OFDM与OTFS技术在高斯白噪声环境下误比特率性能研究"
2025-11-16 10:47:34 9.59MB istio
1
SNDR信噪失真比-IEEE802.3dj D2.2
2025-11-12 21:47:46 68.13MB
1
ICESAT-1和ICESAT-2是美国国家航空航天局(NASA)发射的两颗冰川观测卫星,主要用于测量全球冰盖和冰川的高度变化,从而研究全球气候变化。ICESAT-1卫星在2003年至2009年间运行,而ICESAT-2则是其继任者,自2018年起提供更加精确的地球表面高度数据。 ICESAT-1和ICESAT-2产生的数据量庞大且复杂,为了能够更有效地分析和利用这些数据,研究人员需要借助先进的数据处理技术。Python作为一种广泛应用于数据科学和工程领域的编程语言,因其简洁易学且功能强大而在处理此类数据方面具有明显优势。 在这个项目中,Python程序的主要功能是可视化和去噪ICESAT-1和ICESAT-2的数据。数据可视化是数据处理的重要环节,可以帮助研究人员直观地理解数据内容和结构,从而更有效地进行后续分析。去噪则是为了提高数据的准确性和可靠性,因为原始数据往往包含各种噪声,这些噪声可能会干扰分析结果,导致误解。 项目中的Python程序可能包含以下几个关键部分: 1. 数据加载器(loader):这个部分的代码负责读取ICESAT-1和ICESAT-2的原始数据文件。由于这些数据通常存储为特定格式的文件,加载器需要能够解析这些格式,并将数据转换为程序可以处理的形式。 2. 去噪模块(denoiser):在这个模块中,开发人员实现了特定的算法来去除数据中的噪声。去噪算法的选择和实现对于最终数据质量至关重要。常用的去噪方法包括滤波器设计、小波变换、自适应阈值等技术。 3. 可视化界面(gui):虽然项目可能包含文本终端的命令行界面,但更高级的用户界面能够提供图形化展示,使得数据操作更为直观和便捷。用户可以通过GUI进行数据查看、分析和导出等操作。 4. 构建和分发(build/dist):构建文件夹可能包含项目构建和打包的脚本,确保程序可以被正确编译和打包。分发文件夹则可能包含分发给其他用户或系统安装的文件。 5. 依赖管理(requirements.txt):这个文件列出了程序运行所需的第三方库和模块。由于Python拥有丰富的开源库,如NumPy、SciPy、Matplotlib等,这些库可以大大简化数据处理和可视化的过程。 ICESAT-1和ICESAT-2数据可视化和去噪Python程序的开发,不仅要求开发人员具备扎实的编程技能,还要求其对卫星数据的结构和特性有深入理解。通过有效的数据处理和分析,该程序可以帮助科研人员更好地利用ICESAT卫星数据,进而为全球气候变化的研究提供有力支持。
2025-11-09 08:15:31 717.59MB python ICESAT icesat2 数据处理
1
内容概要:本文介绍了一套完整的MATLAB语音信号降噪流程,包括将原始语音文件转换为.mat格式、设计巴特沃斯带通滤波器进行滤波处理、再将处理后的数据转回降噪语音文件。重点讲解了双声道转单声道、归一化、双向滤波(filtfilt)等关键步骤,并强调采样率一致性、滤波器参数设置合理性对降噪效果的影响。程序已在MATLAB环境中调通,可直接运行。 适合人群:具备一定MATLAB编程基础,从事语音信号处理、音频工程或相关领域的初、中级研发人员。 使用场景及目标:①实现语音信号的去噪预处理;②学习基于MATLAB的数字滤波器设计与应用;③提升语音信噪比,用于语音识别、通信系统等前端处理。 阅读建议:在实践过程中注意根据实际采样率调整滤波器参数,推荐使用耳机进行AB对比测试以直观感受降噪效果,同时结合频谱分析验证处理结果。
2025-10-29 00:48:23 363KB
1
1.小波图像分解重构代码matlab 2.nlm算法图像去噪Matlab代码 3.中值滤波图像去噪Matlab代码 4.DNCNN图像去噪Matlab代码 5.BM3D图像去噪Matlab代码 6.均值滤波图像去噪Matlab代码 图像去噪是计算机视觉和图像处理领域中的一个重要研究方向,它旨在从受噪声污染的图像中去除噪声,恢复出清晰的图像信息。在这一领域中,多种算法被开发出来,以应对不同类型和不同强度的噪声干扰。本次分析的文件内容涉及了几种在图像去噪中常用的技术,包括小波变换分解重构、NLM算法、中值滤波、DNCNN以及BM3D。 小波变换是一种信号处理技术,它在图像处理中的应用主要表现为多分辨率分析,可以有效地分析图像中的局部特征,而不会丢失重要信息。小波图像分解重构代码通过小波变换将图像分解到不同尺度,然后进行重构,达到去噪的目的。这种方法对于处理非平稳信号非常有效。 非局部均值(NLM)算法是一种基于图像局部相似性的滤波技术,它认为图像中存在大量的重复模式,并利用这些模式对噪声进行过滤。NLM算法在处理高斯噪声方面表现优异,能够很好地保留图像的边缘信息。 中值滤波是一种典型的非线性滤波器,它通过取图像邻域像素值的中值来替代中心像素,以此来去除孤立的噪声点。中值滤波尤其适用于去除椒盐噪声,同时保持图像的边缘信息。 深度神经网络(DNN)在图像去噪方面也取得了显著的进展。DNCNN(Denoising Convolutional Neural Network)是一种特定设计的深度卷积网络,它通过学习大量噪声图像和其对应的干净图像之间的映射关系,从而达到去除噪声的目的。DNCNN算法在去噪性能和效率上都有很好的表现。 BM3D(Block-Matching and 3D Filtering)是一种基于稀疏表示的高级图像去噪算法。它利用图像块之间的相似性来构建一个三维组,然后对这个组进行变换域的滤波处理。BM3D算法能够处理各种类型的噪声,并且在去噪的同时很好地保持图像细节。 图像去噪技术的发展反映了对图像质量要求的提高,以及对处理速度快、效果好的去噪算法的不断追求。各种算法之间的对比和优化,促进了算法的发展和图像处理技术的进步。 图像去噪的研究不仅对学术界具有重要意义,它也广泛应用于工业、医疗、交通等众多领域。在实际应用中,选择合适的去噪算法对于最终的图像分析和处理结果至关重要。同时,随着深度学习技术的发展,基于深度学习的去噪算法在实际应用中越来越显示出其优越性。 图像去噪技术的优化和创新对于提升计算机视觉和图像处理的质量标准有着不可忽视的作用。不同算法的选择和应用,需要根据实际的噪声类型、图像特性以及处理速度等因素进行综合考量。未来,随着技术的不断进步,我们可以期待图像去噪技术能够实现更加智能化和高效化的处理。
2025-10-21 16:54:15 2.86MB
1
文章探讨了基于遗传算法对斜齿轮进行多目标优化的方法,旨在同时减轻齿轮的质量并降低其传动中的振动及噪音。首先介绍了遗传算法的基本原理和运算流程,包括编码、初始化种群、适应度计算、选择、交叉、变异等关键步骤。接着建立了齿轮减振降噪和轻量化的优化目标函数,通过双质块双弹簧振动模型和齿轮体积计算公式推导出具体的数学表达式。然后构建了多目标优化函数,采用加权系数法将两个子目标函数合并为单一目标函数。确定了设计变量和约束条件,包括模数、螺旋角、齿数、齿宽系数等参数的取值范围以及接触应力和弯曲应力的性能约束。最后利用MATLAB优化工具箱中的遗传算法实现了优化过程,并对优化前后的齿轮性能数据进行了对比验证,结果显示齿轮的质量减少了39.6%,振动和噪音也有所改善,证明了优化设计方法的有效性。;
2025-10-19 16:09:13 1.55MB 遗传算法 多目标优化 MATLAB
1
图像去噪算法研究是计算机视觉和数字图像处理中的一个重要领域。由于成像系统、传输介质和记录设备的不完善,数字图像在形成、传输和记录过程中容易受到噪声的污染,这些噪声可能表现为孤立的像素点或像素块。噪声的出现会扰乱图像的可观测信息,对图像边缘检测、特征提取、图像分割和模式识别等后续处理步骤造成影响。因此,图像去噪成为图像处理中的一项关键预处理步骤,对于提高图像质量和视觉效果具有重要意义。 国内外的研究者们已经提出多种图像去噪算法。早期的经典算法如模拟退火法虽然有效,但其计算过程复杂,计算量大。近年来,许多非线性滤波方法如正则化方法、最小能量泛函方法和各向异性扩散法等相继出现。这些方法通常在空间域或频域进行,空间域的方法包括均值滤波、加权均值滤波、中值滤波和最小均方差滤波等;频域方法则涉及复杂的域转换运算,需要更多的资源和时间。然而,这些方法都有其局限性,例如加权均值滤波在细节损失上较为明显,中值滤波则仅对脉冲干扰有效,对高斯噪声效果不佳。 中值滤波算法是一种经典的去除图像噪声的算法,它通过用邻域内的像素值中值替换目标像素值来达到去噪效果。该算法能够有效抑制椒盐噪声,但有时会损害图像的细节,如细线和棱角。为了克服这一问题,研究者们发展了标准中值滤波、加权中值滤波、中心加权滤波等改进算法,以提高图像去噪效果。但这些改进算法在去除细节丰富的图像噪声时,容易将非噪声点误判为噪声点,导致替换像素灰度值,进而影响图像的细节。 开题报告还提到了目前图像去噪技术在科学研究、军事技术、工农业生产、医学、气象和天文学等领域的广泛应用。例如,人造卫星拍摄的地球资源照片、气象情况图像,医生利用X射线或CT技术对病人进行断层图像分析等。在这些应用中,图像噪声的处理显得尤为重要,因为噪声的干扰会严重影响图像中的有用信息。 图像去噪算法研究对于图像处理技术的进步和图像质量的提升具有重要的意义。尽管已有的去噪算法在实际应用中取得了一定的成果,但为了满足不同领域的具体需求,研究者仍需探索新的去噪算法,以更有效地降低噪声对原始图像的干扰程度,并提高图像质量,使图像更加逼真。
2025-10-15 00:53:19 151KB
1
电子病历,作为医疗信息化的重要组成部分,记录了患者的病史、检查结果、治疗过程等关键信息,对临床诊断、治疗和疾病研究都具有不可替代的价值。然而,电子病历时序数据通常带有高噪声和非平稳特性,这对于数据处理与分析带来了很大挑战。传统模型在处理此类复杂数据时往往存在局限性,无法很好地提取关键信息并进行准确预测。 为了解决这一问题,本文提出了一种名为VMD-LSTM的混合模型。该模型的核心是“分解-预测-集成”的框架。利用变分模态分解(VMD)方法,将原始病历时序数据分解成若干个相对平稳的本征模态函数(Intrinsic Mode Functions, IMFs)。这一步骤有效地减少了数据中的噪声,并使后续的预测工作变得更加可行。 接下来,针对分解后的每个IMF分量,使用长短时记忆网络(Long Short-Term Memory, LSTM)进行时序预测。LSTM是一种特殊的循环神经网络(RNN),它拥有学习长期依赖信息的能力,非常适合处理和预测时间序列数据中的重要事件。 为了进一步提高预测精度,VMD-LSTM模型引入了参数自适应优化策略,如CPO(Constrained Parameter Optimization)算法,用于优化关键参数K和α。通过这种策略,模型能够更好地捕捉数据中的动态变化,同时适应不同患者情况下的病历数据特性。 研究的核心结果显示,VMD-LSTM模型在进行时序预测时取得了显著的性能提升。与单一使用LSTM模型(均方根误差RMSE为0.86,平均绝对误差MAE为0.62)和传统的经验模态分解与LSTM结合的EMD-LSTM模型(RMSE为0.63,MAE为0.45)相比,VMD-LSTM模型的预测精度最高,RMSE和MAE分别达到0.51和0.38。这些成果表明,VMD-LSTM模型在处理电子病历时序数据时,具有更高的预测精度和鲁棒性。 对于临床工作来说,这样的高精度时序分析工具具有重要价值。尤其是在ICU(重症监护室)环境下,医生需对患者病情进行实时监控和风险评估,准确的时序预测可以显著提高监护效率,提前识别患者病情的潜在风险,从而为患者提供更加精确及时的医疗服务。此外,该模型在疾病研究和医疗大数据分析领域也展现了广阔的前景和应用潜力,有助于提高医疗数据的使用价值和分析深度。 VMD-LSTM模型的研究,不仅为我们提供了一个处理高噪声电子病历时序数据的有效工具,更为后续相关研究提供了新的思路和方法。通过该模型的临床转化应用,有望在提高医疗服务质量、降低医疗成本等方面发挥重要作用。
2025-09-21 23:38:41 46KB 电子病历
1
标题中的“VCEG AE07 视频编解码 PSNR bitrate 信噪比 比特率 折算工具”是指一个专门用于视频编解码质量评估的工具,其中涉及了几个关键的视频编码指标和技术。VCEG(Video Coding Experts Group)是国际电信联盟(ITU-T)和国际标准化组织(ISO)联合成立的一个专门负责视频编码标准制定的小组,AE07可能是该小组的一个特定项目或报告编号。 1. **视频编解码**:视频编解码是将视频信号转换为数字格式以便存储、传输或处理的过程。常见的视频编码标准有MPEG-2、H.264/AVC、HEVC(H.265)、VP9和AV1等。这些标准通过高效的压缩算法减少数据量,提高传输效率。 2. **PSNR (峰值信噪比)**:PSNR(Peak Signal-to-Noise Ratio)是衡量视频质量的一种指标,通常以dB(分贝)为单位。它比较原始未压缩视频与经过编码后的视频之间的差异,数值越高,表示图像质量越好。 3. **比特率 (bitrate)**:比特率是指每秒传输或编码的比特数量,它是决定视频质量和文件大小的关键因素。高比特率可以提供更好的视频质量,但文件也会更大;反之,低比特率会降低视频质量以减小文件大小。 4. **信噪比 (SNR, Signal-to-Noise Ratio)**:在视频编码中,信噪比衡量的是视频信号与噪声的相对强度。高信噪比意味着视频中的图像细节更清晰,而低信噪比则可能导致图像模糊或出现噪声。 5. **折算工具**:这个工具可能用于计算或转换上述参数,比如根据不同的比特率和编码算法预测视频的PSNR值,或者根据设定的PSNR目标来优化比特率。这样的工具对于视频编码器的开发和优化非常有用,可以帮助工程师快速评估不同编码设置对视频质量的影响。 在压缩包内的文件中: - **VCEG-AE07.doc** 可能是关于该项目的详细技术报告,包括理论背景、方法介绍、实验结果等内容。 - **VCEG-AE07_BJM.xla** 很可能是Excel的一个附加宏或模板,用于执行复杂的计算,如PSNR和比特率的转换或分析。 - **VCEG-AE07.xls** 应该是一个Excel工作表,可能包含了实际的数据记录、计算公式或者示例,供用户参考或应用。 了解并熟练运用这些概念和工具,对于从事视频编码、流媒体服务、视频压缩研究或者相关领域的工程师来说是非常重要的。它们可以帮助我们更好地理解和优化视频编码过程,提高视频质量和传输效率。
2025-09-20 21:41:17 61KB VCEG AE07 视频编解码 PSNR
1
采用0.35 μm CMOS工艺设计并实现了一种新的应用于光纤通信跨阻放大器的自动静噪电路。提出的系统结构包括信号强度检测模块、比较基准产生电路、迟滞比较器和静噪控制单元。当输入信号减小到低于静噪使能阈值时,静噪模块将产生静噪使能信号,关闭信号通路;而当输入信号增大到高于静噪解除阈值时,静噪模块将产生静噪解除信号,打开信号通路。仿真结果表明,对于误码率10-10、灵敏度-40 dBm(100 nA)的155 Mb/s跨阻放大器,静噪使能和静噪解除两个阈值分别为47 nA和85 nA,静噪迟滞宽度为2.57 dB,满足系统要求。
2025-09-08 11:13:04 415KB
1