计算机视觉技术大量应用于自动驾驶系统,主要解决物体识别与物体分类问题,本文根据任务提出了一种轻量化的神经网络结构.为解决训练数据规模不足的问题,采用了改进型数据增强算法,使训练数据成倍增加.同时为解决使用数据生成器作为验证集,无法使用tensorboard的问题,提出了解决方案,通过卷积网络可视化方法详细研究了神经网络处理图像信息的原理并提出了优化方法.训练后的模型在验证集上准确率达到了97.5%,满足了自动驾驶系统对分类任务准确率的要求.
1