本文来自于segmentfault,文章介绍了Transformer的整体结构、attention计算过程等相关内容。上图是经典的双向RNN模型,我们知道该模型是通过递归的方式运行,虽然适合对序列数据建模,但是缺点也很明显“它无法并行执行”也就无法利用GPU强大的并行能力(这里插句题外话,正因为GPU强大的并行能力,所以batch_size等于1和等于200运算时间基本差不多),再加上各种门控机制,运行速度很慢。一般而言,编码器输出编码向量C作为解码器输入,但是由于编码向量C中所有的编码器输入值贡献相同,导致序列数据越长信息丢失越多。CNN网络相比RNN网络,它虽然可以并行执行,但是无法一次捕
1