本文详细介绍了基于单目视觉的平面目标定位和坐标测量方法。首先,作者阐述了项目的起因和目的,即在空房间内通过视觉技术跟踪和测算遥控小车的位置。文章重点讲解了三种坐标系(相机坐标系、世界坐标系和像平面坐标系)的定义及其转换关系,以及相机的成像模型和畸变矫正原理。此外,还详细描述了相机标定的过程,包括使用棋盘标志板进行标定、求解内参矩阵和畸变系数的方法,并提供了Python代码示例。最后,文章总结了标定结果的应用,即利用已知参数的相机测算目标位置。 在现代科学技术领域,单目视觉技术已经成为了研究的热点,特别是在平面目标定位和坐标测量方面。这种技术主要依赖于单一相机来获取三维空间信息,通过一系列算法将二维图像转换为可测量的三维坐标数据。文章中所提到的项目起因和目的,是基于一种常见的应用场景,即通过视觉技术来跟踪和测算遥控小车的位置。 在进行单目视觉的坐标测量之前,需要对三种坐标系有深入的了解。相机坐标系、世界坐标系和像平面坐标系的定义及其转换关系,是单目视觉定位系统的基础。其中,相机坐标系通常是以相机的光学中心作为原点,世界坐标系则依据实际场景中物体的位置而设立,而像平面坐标系则是与成像传感器的成像平面相对应。这三者之间的转换关系对于准确测量物体在三维空间中的位置至关重要。 相机的成像模型是单目视觉研究的核心之一。这个模型模拟了光线经过相机镜头后如何成像在传感器平面上,其中包含了对相机焦距、光心以及镜头畸变等因素的考虑。畸变矫正原理是处理因镜头物理特性导致的图像失真的方法,这对于提高测量精度有着直接影响。而矫正过程通常需要一些已知的畸变模型以及矫正参数。 相机标定是单目视觉测量中的另一个重要环节。它通常使用特定的标定物体,如棋盘标志板,在不同的角度和位置对相机进行标定,以此求解出相机的内参矩阵和畸变系数。标定的准确度直接关系到整个测量系统的效果。作者提供了一系列详细的步骤,包括如何通过拍摄棋盘格来获取数据,以及如何使用这些数据来求解相关参数。此外,作者还提供了具体的Python代码示例,使得读者能够更好地理解整个标定过程,并将其应用在实际问题中。 文章总结了相机标定结果的应用。在获得了准确的相机参数后,可以利用这些参数和成像模型来测算目标在三维空间中的位置。这一过程是通过将图像坐标转换为世界坐标系中的坐标来实现的。无论是在自动驾驶汽车、机器人导航还是无人机操控等场合,这种技术都显示出了巨大的应用潜力和实用价值。 单目视觉技术因其成本低、结构简单等特点,在工业界和科研领域受到了广泛关注。在进行实际应用时,我们不仅需要精确的算法,还需要考虑各种实际因素,如光照条件、物体表面特性以及环境干扰等,这些都会影响到测量的准确性和可靠性。而随着计算机视觉技术的不断发展,单目视觉定位与坐标测量技术也在不断进步,为各个领域提供了更为高效、精确的解决方案。
1
根据单目视觉定位所用图像帧数不同把定位方法分为基于单帧图像的定位和基于双帧或者多帧图像的定位两类。
2023-05-08 23:11:32 204KB 单目视觉 定位
1
针对现有移动机器人单目视觉定位算法在光照变化和弱光照区域表现较差、无法应用于煤矿井下光照较暗场景的问题,通过非极大值抑制处理、自适应阈值调节等对快速特征点提取和描述(ORB)算法进行改进,采用随机抽样一致性(RANSAC)算法进行特征点匹配,提高了煤矿井下弱光照区域的特征点提取和匹配效率。针对仅靠单目视觉定位无法确定机器人与物体的距离及物体大小的问题,采用对极几何法对匹配好的特征点进行视觉解算,通过惯导数据为单目视觉定位提供尺度信息;根据紧耦合原理,采用图优化方法对惯导数据和单目视觉数据进行融合优化并求解,得到机器人位姿信息。实验结果表明:①ORB算法虽然提取的特征点数较少,但耗时短,且特征点分布均匀,可以准确描述物体特征。②改进ORB算法与原ORB算法相比,虽然提取时间有了一定的增加,但提取的可用特征点数也大大增加了。③RANSAC算法剔除了误匹配点,提高了特征点匹配的准确性,从而提高了单目视觉定位精度。④改进后融合定位方法精度有了很大提升,相对误差由0.6 m降低到0.4 m以下,平均误差由0.20 m减小到0.15 m,均方根误差由0.24 m减小到0.18 m。
1
OpenCV单目视觉定位(测量),能检测识别出自定义的物体标签,并计算出自定义物体距离摄像头光心的X,Y方向距离, 用于无人机/机器人视觉定位。
2019-12-21 20:57:04 2KB 单目视觉定位
1
OpenCV单目视觉定位(测量),能检测识别出自定义的物体标签,并计算出自定义物体距离摄像头光心的X,Y方向距离, 用于无人机/机器人视觉定位。
2019-12-21 19:33:25 5KB 单目视觉定位
1