针对单目深度估计网络庞大的参数量和计算量,提出一种轻量金字塔解码结构的单目深度估计网络,可以在保证估计精度的情况下降低网络模型的复杂度、减少运算时间。该网络基于编解码结构,以端到端的方式估计单目图像的深度图。编码端使用ResNet50网络结构;在解码端提出了一种轻量金字塔解码模块,采用深度空洞可分离卷积和分组卷积以提升感受野范围,同时减少了参数量,并且采用金字塔结构融合不同感受野下的特征图以提升解码模块的性能;此外,在解码模块之间增加跳跃连接实现知识共享,以提升网络的估计精度。在NYUD v2数据集上的实验结果表明,与结构注意力引导网络相比,轻量金字塔解码结构的单目深度估计网络在误差RMS的指标上降低约11.0%,计算效率提升约84.6%。
1
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals---->基于拉普拉斯金字塔深度残差的单目深度估计 是一篇优秀的CVPR文档 word全文翻译
2022-05-31 09:04:17 5.39MB 深度估计
1
多恩 更新 更新了整个代码库,并重新实现了一些层和损失函数,以使其运行速度更快并使用更少的内存。 该存储库仅包含 DORN 模型的核心代码。 整个代码将保存在。 介绍 这是的的 PyTorch 实现。 预训练模型 DORN 的 resnet 主干,在第一 conv 层有 3 个 conv,与原始 resnet 不同。 resnet骨干网的预训练模型可以从下载 。 数据集 纽约大学深度 V2 未实现。 基蒂 根据 ,我们应该远离 eigen split 并切换到 。 更多详细信息,请参阅 。
2021-10-26 15:22:36 13KB pytorch ordinal-regression dorn depth-prediction
1
Packnet:单目深度估计与伪雷达点云
2021-06-27 19:07:41 11.97MB 单目深度估计 伪雷达点云
MonoDepth-PyTorch - PyTorch无监督单目深度估计
2020-01-03 11:39:32 22MB Python开发-机器学习
1