MATLAB环境下基于数据驱动与协方差驱动的随机子空间结构模态参数识别方法,多领域应用,程序已优化可运行。,MATLAB环境下基于数据驱动与协方差驱动的随机子空间结构模态参数识别方法——适用于土木、航空航天及机械领域,MATLAB环境下基于数据驱动的随机子空间(SSI-DATA)和协方差驱动的随机子空间(SSI-COV)的结构模态参数识别方法,可用于土木,航空航天,机械等领域。 本品为程序,已调通,可直接运行。 ,MATLAB; 随机子空间; 结构模态参数识别; 数据驱动; 协方差驱动; 土木、航空航天、机械领域。,MATLAB程序:基于数据与协方差驱动的随机子空间模态参数识别法
2025-04-23 15:43:48 1.63MB sass
1
基于MATLAB的自适应容积卡尔曼滤波(ACKF_Q)源代码:优化状态协方差Q的估计误差降低技术,【ACKF_Q】基于MATLAB的自适应ckf(容积卡尔曼滤波)源代码,通过自适应状态协方差Q来实现,得到了比传统方法更低的估计误差。 适用于Q无法获取、估计不准、变化不定的情况。 只有一个m文件,方便运行,包运行成功 ,基于MATLAB; 自适应ckf; 容积卡尔曼滤波; 自适应状态协方差Q; 估计误差; 无法获取Q; 估计不准确; 变化不定的Q情况; m文件实现。,自适应容积卡尔曼滤波(ACKF)源码:误差更低,状态协方差Q自适应调整
2025-03-30 14:35:36 229KB 柔性数组
1
知识辅助(KA)时空自适应处理(STAP)是一种吸引人的方案,用于提高在样本匮乏的异构环境中慢速移动目标的检测性能。 在本文中,我们解决了在KA约束下干扰协方差矩阵的最大似然估计问题。 为了降低内点法的复杂性,我们导出了干扰协方差矩阵的近似形式最大似然估计。 此外,对于在KA约束中仍然无法解决的开放问题的超参数选择,我们提出了一种基于似然函数和交叉验证的高效且全自动的方法。 我们发现,提出的估计器由白化样本协方差矩阵(SCM)的预白化步骤和特征值截断步骤组成,这与假定的杂波协方差(FMLACC)方法与现有的快速最大似然性有些相似。 但是,他们采用了不同的方法来截断增白的SCM的特征值。 数值模拟还表明,通过适当地选择超参数,所提出的估计可以显着优于在某些情况下FMLACC方法。
2024-07-17 09:17:31 472KB 研究论文
1
数据源——数据可视化(七):Pandas香港酒店数据高级分析,涉及相关系数,协方差,数据离散化,透视表等精美可视化展示
2024-04-23 17:41:01 103KB pandas
1
诗人 阈值主正交补码的大型协方差估计的Python实现 参考:
2024-03-01 10:24:45 8KB Python
1

对于带未知互协方差的两传感器系统, 提出一种协方差交叉(CI) 融合鲁棒稳态Kalman 滤波器, 它关于未知
协方差具有鲁棒性. 严格证明了该滤波器的实际精度高于每个局部滤波器的精度, 但低于带已知互协方差的最优
融合Kalman 滤波器的精度. 基于协方差椭圆给出了精度关系的几何解释. 进一步将上述结果推广到一般多传感器情
形. 一个跟踪系统的Monte-Carlo 仿真例子表明, 其实际精度接近于带已知互协方差的最优融合器的精度.

1
MWCD代码版本1.0 最小加权协方差行列式(MWCD)估计量的计算 Matlab中的代码允许计算Roelant(2009)提出的最小加权协方差决定子(MWCD)估计量。 这是具有(可能)高故障点的多元数据集参数的可靠估计。 随时使用或修改代码。 要求 您需要文件fastlts.m来运行完整的代码,该代码将MWCD与最小协方差决定因素(MCD)估计量进行比较。 可在 用法 mainMwcd.m读取外部数据文件的主文件,运行经典估计(即高斯数据的最大似然)的估计,MCD和MWCD估计器,并显示其结果。 它还以图形方式显示了所得的MWCD估计量。 mwcdCheck.m用于为给定数据集计算MWCD估计量的函数。 作者 JanTichavský,捷克科学院计算机科学研究所 Jan Kalina,捷克科学院计算机科学研究所 接触 请随时与我们联系( )或写问题。 如何引用 请考虑引用以下内
2023-04-12 19:24:26 4KB MATLAB
1
在多输入多输出-正交频分复用(MIMO-OFDM)系统中,通过联合估计信道矩阵和干扰协方差矩阵(ICM)的方法来抑制同信道干扰.首先,利用最小二乘法和残差估计方法获取信道矩阵和ICM的初始估计值;然后,基于Cholesky分解方法对ICM的估计值进行改善,并利用改善后的ICM估计值对信道矩阵估计值进行更新.该方法充分利用了时域和频域中的所有可用信息,提高了信道估计精度,较好地抑制了同信道干扰.仿真结果表明:与其他可实现的非迭代方法相比,该方法所得的信道频率响应估计均方误差性能增益高于2 d B;信干噪比(SINR)越大,比特误码率性能的改善程度越好,并且随着天线数的增多,性能增益也增大.
1
协方差矩阵的估计 两种方法的实现(Python) “股票收益协方差矩阵的改进估计及其在投资组合选择中的应用/ Ledoit and Wolf 2001”( “大尺寸协方差矩阵的直接非线性收缩估计/ Ledoit and Wolf 2017”
1