随着医疗行业信息技术的引入,该行业的信息化和自动化水准不断提高。医学 文本信息处理技术正逐渐成为一个新的研究热点。医疗文本,以电子病历为代表, 包含了大量丰富的医疗信息,是进行疾病预测、个性化信息推荐、临床决策支持、 用药模式挖掘等的重要资源,并且可以以此为基础进行医院机构服务价值的衡量。 医学文本中尽管蕴藏着丰富的医疗知识,但处理起来也更加困难。由于以电子病历 为主的医疗文本中包括大量非结构化的自由文本以及图像影像信息,且医生自行 录入可能导致文本的拼写错误、医学名词简写以及不同医生不同地区的惯用语,电 子病历中所包含的医疗信息还不能被计算机有效利用。因此,机器学习和自然语言 处理相关技术将在医学文本的分析和挖掘中发挥重要作用。 为了更好地探索和利用医学文本,特别是电子病历的半结构化和非结构化信 息,对其中非结构化自由文本进行标准化和结构化非常的重要,而医疗信息对时间 特征具有较高的敏感性,使得时间信息也成为了更好分析医疗文本必不可少的因 素。传统的文本分类需要先进行一系列预处理和特征工程的建模,在医疗文本中存 在大量的专业术语和知识、不准确的分词或难以理解的语义特征会影响分类的正
2022-04-27 16:05:42 11.89MB 文档资料 机器学习 人工智能
中国临床神经内科 CCKS2019中文命名实体识别任务。从医疗文本中识别疾病和诊断,解剖部位,影像检查,实验室检查,手术和药物6种命名实体。实现基于捷巴和AC自动机的基线构建,基于BiLSTM和CRF的序列标注模型构造。伯尔尼的部分代码源于感谢作者。模型最终测试集重叠0.81,还有更多改进空间。
2021-10-04 20:01:00 42.36MB 系统开源
1
Harnessing Text Structure Strategy for Reading Expository and Medical Texts among EFL College Students
2021-04-14 20:08:19 553KB 文本结构化
1
2013年至2018年,以医患关系为关键词爬取的20000+微博数据,包括文本、链接、日期、转赞评、用户名等字段。
2019-12-21 21:44:25 17.35MB 医患关系 医疗文本 微博关键词
1
《医疗知识图谱的构建和应用》 倪渊平安医疗科技医疗文本处理部负责人
2019-12-21 20:34:20 5.96MB 知识图谱
1