国产医用荧光内窥镜图像融合效果展示图
2024-08-29 00:06:41 5.84MB 医疗图像 图像处理
1
基于深度学习的医疗图像分割综述 深度学习技术的崛起为医疗图像处理带来了革命性的变革,尤其是在图像分割领域。本次综述将对基于深度学习的医疗图像分割技术进行详细的介绍和分析。 医疗图像分割的应用 医疗图像分割技术可以帮助医生更准确地诊断病情,进行更精确的手术导航,以及开展其他重要的医学应用。医疗图像分割的应用包括: 1. 医学影像诊断:在医学影像诊断中,图像分割技术可以帮助医生将图像中的病变区域与正常组织区分开来,从而提高诊断的准确性。例如,CT扫描中的肿瘤分割,X光中的肺炎分割等。 2. 手术导航:在手术导航中,医生可以使用图像分割技术来创建3D模型,以便在手术过程中更好地理解患者内部的结构。这可以帮助医生更精确地定位病变区域,并提高手术效率。 3. 病理分析:在病理分析中,图像分割技术可以帮助医生将组织样本分成不同的区域,以便更好地理解疾病的发展过程和治疗效果。 深度学习模型概述 深度学习模型是基于深度学习的医疗图像分割技术的核心。常见的深度学习模型包括: 1. U-Net:U-Net是最常用的医疗图像分割模型之一。它是一个全卷积网络(FCN)的变种,具有一个收缩路径(编码器)和一个扩展路径(解码器),形状像字母“U”。U-Net能够捕获图像的上下文信息和位置信息,具有良好的空间一致性。 2. ResNet:ResNet是一种残差网络,通过引入残差块来帮助模型更好地学习和表示图像特征。ResNet的引入提高了模型的表达能力和泛化性能,使得模型能够更好地处理复杂的医疗图像数据。 3. EfficientNet:EfficientNet是一种新型的神经网络架构,旨在平衡模型的大小、性能和精度。它通过改变网络结构,使用更少的计算资源来达到更好的性能。在医疗图像分割中,EfficientNet具有广泛的应用前景。 4. Transformer:Transformer模型在自然语言处理领域取得了巨大成功。由于其具有全局信息交互的能力,Transformer也被引入到图像分割任务中。例如,ViT(Vision Transformer)就被应用于医疗图像分割任务中,取得了较好的效果。 训练和优化方法 训练和优化方法是基于深度学习的医疗图像分割技术的重要组成部分。常见的训练和优化方法包括: 1. 数据增强:由于医疗图像数据集通常较小,为了提高模型的泛化性能,通常会使用数据增强技术来扩充数据集。这包括旋转、缩放、裁剪、翻转等操作。 2. 损失函数:在训练过程中,损失函数被用来衡量模型的预测结果与真实标签之间的差距。常用的损失函数包括交叉熵损失、Dice损失、IoU损失等。 3. 优化算法:常见的优化算法包括随机梯度下降(SGD)、Adam、RMSProp等。这些算法可以帮助我们调整模型的参数,以最小化损失函数。 挑战和展望 基于深度学习的医疗图像分割技术仍然面临着许多挑战和挑战。例如,医疗图像数据集的获取和标注、模型的泛化性能、计算资源的限制等。然而,基于深度学习的医疗图像分割技术也展望了广泛的应用前景,例如医学影像诊断、手术导航、病理分析等。
2024-07-09 16:00:15 2.4MB
1
ORIGA是经典的医疗图像数据集,包含650张照片和相应的蒙版,分辨率为3072×2048。对应的论文是ORIGA-light : An Online Retinal Fundus Image Database for Glaucoma Analysis and Research,均在文件中。原始的网站的数据集下线了。 Currently, ORIGA-light contains 650 retinal images annotated by trained professionals from Singapore Eye Research Institute. A wide collection of image signs, critical for glaucoma diagnosis, are annotated. We will update the system continuously with more clinical ground-truth images.
2023-06-28 11:14:25 190.36MB 数据集 医学影像 视盘分割 杯盘分割
1
多帧DICOM医疗图像,能够用来测试一些简单的医疗影像实验。
2023-03-21 18:41:51 37.97MB 医疗图像
1
MedMNIST 由上海交通大学于 2020 年 10 月 28 日发布,是一个包含 10 个医学公开数据集的集合,共计包含 45 万张 28*28 的医疗多模态图片数据,可用于解决医学图像分析相关问题。 点击查看相关论文 点击访问开源地址 MedMNIST 具有以下特点: 教育性:多模态数据来自于多个公共医学图像数据集,采用知识共享(CC)许可协议,方便教学使用。 标准化:全部数据已经预处理成相同的格式,降低准入门槛,任何人都可以使用。 多样性:多模态数据集涵盖了不同的数据模式,数据规模从 100 到 100,000 都支持,任务类型也丰富为二元分类、多元分类、有序 回归 和多标签。 轻量级:28*28 的图像尺寸便于迅速进行原型设计,对多模态机器学习和 AutoML 算法 进行快速迭代和实验。
2022-07-13 11:04:56 623.72MB 数据集
医疗图像分类,深度学习图像分类算法,带前后端,一个完整的癌症识别项目,keras框架+flask vue
2022-05-30 12:05:44 209.56MB 图像分类 深度学习 医疗图像分类
使用非局部自相似性和低秩先验来增强医疗图像分辨率
2022-05-24 12:12:16 1024KB 研究论文
1
两个dicom图像样例。可以测试一下pacs系统图像解析能力。
2022-03-10 15:43:53 29.11MB dicom 样例 pacs 医疗图像
1
(EIZO)发布用于医疗图像的300万像素单色液晶显示器.docx
2022-02-15 14:09:45 378KB word文档 管理类文档
机器学习,图形处理技术和医学成像数据的可用性的快速发展导致在医学领域深度学习模型的使用迅速增加。基于卷积神经网络(CNN)的体系结构的快速发展加剧了这种情况,医学成像社区采用了该体系结构来帮助临床医生进行疾病诊断。
2021-11-22 11:28:58 1.11MB 《3D医疗图像处理》
1