深度学习在医学影像分割领域得到广泛应用,其中,2015 年提出的 U-Net 因其分割小目标效果较好、结构具有可扩展性,自提出以来受到广泛关注.近年来,随着医学图像割性能要求的提升,众多学者针对 U-Net 结构也在不断地改进和扩展,比如编解码器的改进、外接特征金字塔等.通过对基于 U-Net 结构改进的医学影像分割技术,从面向性能优化和面向结构改进两个方面进行总结,对相关方法进行了综述、分类和总结,并介绍图像分割中常用的损失函数、评价参数和模块,进而总结了针对不同目标改进 U-Net 结构的思路和方法,为相关研究提供了参考.
2022-05-28 10:05:09 3MB 文档资料 U-Net
1
医学影像分割是从二维或三维医学影像中检测出目标对象的边界,获取正常 组织器官及肿瘤病变区域,其分割技术在诊断的形态和解剖分析、治疗前的活检 引导与路径规划、治疗中的跟踪与定位、预后的病情进展变化等方面有着重要的 临床意义。虽然基于机器学习的全自动分割算法目前在多模态医学影像分割上取 得了众多的研究成果,并展示出其优秀的分割性能。然而,不同模态的成像技术 受噪声、部分容积效应和图像强度信息不均匀等因素影响,严重降低了图像质量 而引起边界定位困难。加之,肿瘤及组织器官解剖多样性和在不同模态图像上的 特异性表达及空间与时间分辨率各有不同,从而增加了目标对象的复杂性,因此, 全自动、稳定、鲁棒和准确的医学影像分割依然具有较大的挑战。 为解决上述难题,本论文进行了如下研究:从边界识别和形状多变自适应能 力的角度研究提升分割算法精度的方法;研究数据驱动的乳腺超声(Breast Ultrasound, BUS)、肝脏计算断层成像(Computed Tomography,CT)、前列腺磁 共振(Magnetic Resonance Imaging, MRI)的跨模态图像精准分割算法;调研分 析和验证分
2022-04-29 10:05:40 7.46MB 机器学习 综合资源 人工智能
V-Net的Tensorflow实现 这是用于3D医学成像分割的架构的Tensorflow实现。 该代码仅实现Tensorflow图,必须在训练程序中使用它。 网络的视觉表示 这是此代码实现的网络示例。 用法示例 from VNet import VNet input_channels = 6 num_classes = 1 tf_input = tf.placeholder(dtype=tf.float32, shape=(10, 190, 190, 20, input_channels)) model = VNet(num_classes=num_classes, keep_prob=.7) logits = model.network_fn(tf_input, is_training=True) logits将具有[10, 190, 190, 20, 1] logits形状[10,
1
针对现有方法对肝部医学影像分割上的不足,提出了一种用于对肝部医学影像进行分割的改进型U-Net结构。在上采样过程中只复制池化层特征,以减少信息丢失;同时引入残差网络对初步分割图像进行循环精炼,实现高层特征与低层特征的融合;利用对边界敏感的新型混合损失函数对图像进行细化处理,得到更为精确的分割结果。实验结果表明,肝脏图像和肝脏肿瘤图像的Dice系数分别为96.26%和83.32%。相比传统的U-Net,所提网络可以获得更高级的语义信息,进一步提高对肝脏和肝肿瘤图像的分割精度。
2021-12-29 15:21:20 11.67MB 图像处理 图像分割 肝部医学 U-Net
1
田捷编写的医学影像与分析课本pdf版,用于下载学习三维重建技术
2021-09-23 09:06:56 12.54MB 医学影像 分割 三维 重建
1
医学影像分割是计算机辅助诊断中的一项基础且关键的任务,目的在于从像素级别准确识别出目标器官、组织或病变区域。不同于自然场景下的图像,医学影像往往纹理复杂,同时受限于成像技术和成像设备,医学影像噪声大,边界模糊而不易判断。除此之外,对医学影像进行标注极大依赖于医疗专家的认知和经验,因此可用于训练中的标注数据少且存在标注误差。由于上述的医学影像边缘模糊不清、训练数据较少和标注误差较大等特点,基于传统图像分割算法搭建的辅助诊断系统难以满足临床应用的要求。近年来随着卷积神经网络(CNN)在计算机视觉和自然语言处理领域的广泛应用,基于深度学习的医学影像分割算法取得了极大的成功。首先概述了近几年基于深度学习的医学影像分割的研究进展,包括这些医学影像分割算法的基本结构、目标函数和优化方法。随后针对医学影像标注数据有限的问题,对目前半监督条件下医学影像分割的主流工作进行了整理归纳和分析。此外,还介绍了针对标注误差进行不确定度分析的相关工作。最后,总结分析了深度学习医学影像分割的特点并展望了未来的研究趋势。
2021-08-29 09:10:56 2.48MB 深度学习
1
医学影像分割是计算机视觉在医学影像处理中的一个重要应用领域,其目标是从医学影像中分割出目标区域,为后续的疾病诊断和治疗提供有效的帮助。
2021-05-24 00:07:22 1.06MB 医学影像分割 深度学习
1
基于mean shift的医学影像分割,胃癌淋巴细胞的分割
2019-12-21 20:11:02 107KB meanshift
1