### 算法设计与分析实验报告知识点总结 #### 实验一:Coin-row problem 1. **问题定义**:给定一排硬币,每个硬币有一定的价值,求出一种方法在不拾取相邻硬币的前提下,可以拾取的最大价值。 2. **算法思想**:通过动态规划解决问题,从左到右计算每一个位置能获得的最大价值。对于每个硬币,有两种选择:拾取当前硬币和不拾取当前硬币,然后取两种选择中的最大值。 3. **时间复杂度**:O(n),因为只需要遍历一次硬币数组即可完成计算。 4. **空间复杂度**:O(1),由于只需要存储上一个位置和当前位置的两个值,可以使用固定空间完成计算。 5. **具体实现**:首先定义数组来存储每一步的最大值,然后从左到右遍历数组,每个位置上更新最大值,最后输出最后一个硬币的最大值作为答案。 #### 实验二:Coin-collecting by robot 1. **问题定义**:在一块棋盘上,机器人从左上角出发,到达右下角,中间有硬币分布,要求在不回头的前提下,拾取尽可能多的硬币。 2. **算法思想**:使用动态规划算法。机器人在每个格子时,有两种选择:向右或向下移动一格。在每次移动时,比较右边和下面的硬币数量,选择一个硬币数量多的方向移动,从而保证在到达右下角时,已经收集了最多的硬币。 3. **时间复杂度**:O(n*m),其中n是棋盘的行数,m是棋盘的列数,因为需要遍历整个棋盘。 4. **空间复杂度**:O(n*m),由于需要一个二维数组来记录每个位置的最大硬币数,空间复杂度与棋盘的大小成正比。 5. **具体实现**:定义一个二维数组来存储到每个位置时可能收集到的最大硬币数,然后遍历整个棋盘,记录从起点到每个格子的最大硬币数,最后输出右下角的最大硬币数。 #### 实验方案 1. **头文件和命名空间**:使用了头文件,这个头文件包含了几乎所有的C++标准库头文件,方便代码编写,但在生产环境中使用需要谨慎。 2. **变量声明和初始化**:声明了数组a来存储硬币的价值或硬币的分布,并初始化为0。 3. **输入处理**:使用cin来读取硬币的数量和每枚硬币的价值或硬币的分布矩阵。 4. **算法实现**:使用动态规划的方法进行数组的更新,得出最大价值或硬币数量。 5. **测试数据规模及生成方式**:设定不同的数据规模进行测试,手动输入测试数据,以验证算法的正确性和效率。 6. **运行时间和空间的采集方法**:使用clock_t数据类型和clock()函数来计算算法运行的时间,并通过sizeof运算符来获取程序运行时占用的内存空间。 #### 实验环境 实验环境配置为Windows 10系统,使用DEV开发环境进行代码的编写和测试。 ###
1
对于给定的字符串A和B,给定其字串的内容和空格相对字符的距离,使用动态规划算法求解两字符串的扩展距离。
1