社会网络数据分析蕴藏着巨大的经济利益,但是直接研究社会网络数据可能造成用户敏感信息泄漏,对个人隐私构成威胁。目前的隐私保护技术集中于研究单次数据发布,即静态网络中的隐私保护,然而社会网络数据动态发布需要动态的隐私保护方法。文中针对攻击者拥有在不同时刻的节点1-邻域子图作为背景知识的应用场景,提出了一种基于动态社会网络的隐私保护方法,该方法利用相邻时间片网络图之间的关联关系,依据信息变化增量确定邻域同构等价组中的基准节点,并通过对下三角矩阵操作来实现等价组中节点邻域子图匿名化的持久性。实验结果表明该模型能够有效地抵制邻域攻击,保护动态社会网络发布的用户数据隐私。
1