针对蚁群算法容易陷入局部最优,收敛速度慢,难以解决大规模问题,提出依据信息熵和停滞次数的动态信息素的更新策略和基于最优路径集合的奖惩策略的蚁群算法,在动态信息素更新策略中,利用收敛系数来动态调节信息素,从而有效的平衡算法的多样性和收敛性.在搜索过程中,通过持续增大收敛系数,加快了收敛速度;当信息熵降低或者停滞次数达到一定数值时,通过降低收敛系数,从而跳出局部最优.同时基于最优路径集合,对较优路径奖励,对其他路径惩罚,通过减少蚂蚁每一步可选城市的数量,加快了收敛速度.并且使用三种局部优化方法,从而进一步提高解的精度.经过实验测试,该算法用于解决旅行商 TSP(Travelling Salesman Problem)问题,具有较高的求解精度,并能有效平衡解的精度和收敛速度的矛盾.
1
针对蚁群算法加速收敛和早熟、停滞现象的矛盾,提出一种基于自适应路径选择和动态信息素更新的蚁群算法,以求在加速收敛和防止早熟、停滞现象之间取得很好的平衡。该算法根据优化过程中解的分布状况,自适应的调整路径选择策略和信息量更新策略。基于旅行商问题的实验验证了算法比一般蚁群算法具有更好的全局搜索能力、收敛速度和解的多样性。
2022-03-23 11:19:15 1.1MB 论文研究
1