车辆多体动力学仿真 第四章 ADAMS-Car(四) 车辆多体动力学仿真第四章 ADAMS-Car(四)中介绍了测量请求(Requests)和ADAMS Car Ride的概念。测量请求是ADAMS/Car中的主要输出数据方式,需要在模板模式下创建或修改。测量请求的类型包括displacement、velocity、acceleration和force等。 在ADAMS/Car中,测量请求可以通过三种方式定义:Define Using Type And Markers、Define Using Subroutine和Define Using Function Expression。用户可以在模板模式下点击Build→Request→New生成新的测量请求。 测量请求的激活可以在子系统或装配中进行切换。用户可以进行激活/失效操作的测量请求,包括actuators、bushings、springs、dampers、bumpstops、reboundstops等。要存储测量请求的激活性,可以建立一个包含参数变量的组,该变量是存储在子系统文件中的。 ADAMS Car Ride是ADAMS/Car的即插即用模块,是Adams与世界上主要汽车制造商合作用户开发的汽车平顺性虚拟环境。ADAMS Car Ride将数字化汽车(Functional Digital Vehicle)仿真从操稳性试验扩展到平顺性试验。 ADAMS Car Ride包括了在汽车平顺性频域分析方面建模、试验及后处理所需要的单元、模型及事件的定义,一旦系统中所有部件详细的参数指定,就可以基于一个扩展的试验平台,完成一系列预定义的平顺性和舒适性研究过程,使用户可以进行典型的系统级NVH(Noise、Vibration、Harshness)性能的评估,也可以对其他系统中的模型单元进行单独分析。 在ADAMS/Car Ride中用虚拟四柱试验台(Four-Post Test Rig)对ADAMS/Car轿车模型进行仿真试验。四柱试验台提供多种时域分析和频域分析(频域分析需要ADAMS/Vibration模块支持)。用户可以通过对试验台输入力或位移的RPC III格式数据文件(RPC III格式文件是由MTS系统公司创造的一种稀疏参数控制文件“Remote Parameter Control”),模拟汽车行驶在粗糙路面和轮胎碰撞石块时的响应特性。 ADAMS-Car(四)章节中介绍了测量请求和ADAMS Car Ride的概念,帮助用户更好地理解和应用ADAMS/Car软件。
2025-07-08 09:19:55 3.49MB 车辆动力学
1
车辆多体动力学仿真第四章 ADAMS-Car(三) 车辆多体动力学仿真第四章 ADAMS-Car(三)主要介绍了ADAMS/Car中路面建模器的使用和路面特性文件结构。以下是相关知识点的总结: 一、ADAMS/3D-Spline 路面模型 * ADAMS/3D-Spline 路面模型可以限定任意一个三维的光滑路面,例如停车场、跑道等等。 * 完整的路面定义参数包括:路面的中线、宽度、横向倾斜角、路面左右的摩擦系数等等。 * 路面数据以XML形式文件储存。 二、路面特性文件结构 * 路面特性文件结构包含不同的数据块:MDI_HEADER、UNITS、MODEL、GLOBAL_PARAMETERS、DATA_POINTS等。 * MDI_HEADER 描述TeimOrbit文件。 * UNITS规定了路面单位制。 * MODEL解释路面模式和版本。 * GLOBAL_PARAMETERS 定义通用路面参数。 * DATA_POINTS 包含数据点格式的路面信息。 三、使用路面建模器 * 路面建模器是生成路面数据文件的快捷工具。 * 使用路面建模器能够:从scratch中创建3D路面、使路面可视化、以XML格式修改3D Spline 路面特性文件、创建路面障碍的真实性以便定制测试路径。 * 启动路面建模器:在Adams/Car中开始路面建模器,在Simulate模拟菜单中,点击Full-Vehicle Analysis,然后选择路面建模器。 四、路面建模器的使用 * 创建一个新的3D Spline 路面性能文件:选择File菜单,选择New。 * 编辑已有的3D Spline 路面性能文件:选择以下几种方式之一:从File菜单中,选择Open,然后浏览所有需要的文件;在Road File的文本框的右边,选择 Browse按钮,然后浏览所以需要的文件。 * 改变单位:从Settings菜单中,选择Units,然后按OK。 * 保存对XML文件所作的改变:在路面建模器的底部,选择Save或者Save As。 * 显示Header 信息并添加注释:选择Header 标签,查看Revision Comment区域的信息,输入任何对管理路面性能文件有用的注释。 五、设置或者修改Global参数 * 选择Global 标签。 * 改变参数。(向前方向、研究算法、封闭道路,等等) 六、定义路面数据点 * 使用数据点表:编辑数据表的值。 * 新增功能:定义路面数据点的新功能。 ADAMS/Car中的路面建模器和路面特性文件结构是车辆多体动力学仿真的重要组成部分,对于车辆的行驶仿真和测试路径的设计具有重要意义。
2025-06-19 13:43:14 3.06MB 车辆动力学
1
在当今科研领域,水电解作为一种重要的能量转换和储存手段,具有广泛的应用前景。特别是碱性水电解槽,它在氢气生产、电池充电等方面发挥着关键作用。为了更好地理解和优化碱性水电解槽的工作效率,对其内部流动特征进行深入研究显得尤为重要。本文将详细介绍如何使用Fluent软件创建碱性水电解槽乳突主极板的三维模型,并进行流体动力学仿真分析,探索凹面和凸面的深度及间距对流场的影响,以及如何分析后处理中的压力分布、温度分布、流线轨迹和涡分布等关键指标。 三维模型的创建是仿真分析的第一步,也是至关重要的一步。碱性水电解槽的三维建模需要精确地捕捉到极板上的乳突结构,因为这些乳突不仅为电化学反应提供了更大的表面积,而且它们的几何参数会直接影响电解槽内部的流动和传质效率。在这个过程中,需要考虑到极板材料的选择、乳突的尺寸、形状及其分布模式等多个因素。Fluent软件提供了一个良好的平台,通过其强大的几何建模和网格划分工具,可以将复杂的物理现象转化为数学模型。 创建完三维模型后,接下来的工作是设置合理的流体动力学仿真参数。在碱性水电解过程中,电解液的流动状态直接关系到系统的能量效率和氢气的质量。在Fluent中,需要设定相应的流体参数,如电解液的物理性质(密度、粘度等)、流动状态(层流或湍流)、边界条件(速度入口、压力出口等)以及电解过程中的电化学参数(电流密度、电压等)。这些参数的合理设置对于得到准确的仿真结果至关重要。 在仿真过程中,凹面和凸面的深度以及间距是影响流场分布的重要因素。通过改变这些几何参数,可以观察到流体动力学特性的变化,如流速、压力和温度分布等。例如,较深的凹面可能会产生较大的局部阻力,减慢流速并导致热量聚集;而凸起的乳突间距则会影响流体的均布性,进而影响传质效果。通过Fluent的仿真功能,可以直观地展示这些参数如何影响流体行为,并为优化设计提供依据。 仿真完成后,需要对数据进行后处理分析。Fluent后处理模块能够输出压力分布、温度分布、流线轨迹和涡分布等信息。这些数据对于评估电解槽内部的流体状态和能量转换效率具有重要意义。例如,压力分布图可以帮助工程师识别流体在电解槽内部的压力损失,而温度分布图则有助于评估反应过程中的热管理问题。流线轨迹和涡分布则提供了流体运动的具体形态,对于优化乳突的设计和布置提供了直接的参考。 碱性水电解槽乳突主极板三维模型的创建和流体动力学仿真是一套系统而复杂的技术流程。它涉及到精确的三维建模、合理的仿真参数设置、以及细致的后处理分析。通过掌握这些技术,研究者和工程师可以更好地理解电解槽内部的流动和传质过程,从而优化设计,提高电解效率,这对于推动碱性水电解技术的发展具有重要的实际意义。
2025-06-12 09:02:55 340KB sass
1
基于MATLAB的机器人运动学建模与动力学仿真研究:正逆解、雅克比矩阵求解及轨迹规划优化,MATLAB机器人运动学正逆解与动力学建模仿真:雅克比矩阵求解及轨迹规划策略研究,MATLAB机器人运动学正逆解、动力学建模仿真与轨迹规划,雅克比矩阵求解.蒙特卡洛采样画出末端执行器工作空间 基于时间最优的改进粒子群优化算法机械臂轨迹规划设计 圆弧轨迹规划 机械臂绘制写字 ,MATLAB机器人运动学正逆解;动力学建模仿真;雅克比矩阵求解;蒙特卡洛采样;末端执行器工作空间;时间最优轨迹规划;改进粒子群优化算法;圆弧轨迹规划;机械臂写字。,基于MATLAB的机器人运动学逆解与动力学建模仿真研究
2025-05-29 15:02:17 438KB
1
基于Simulink的直升机非线性动力学模型与仿真:黑鹰单旋翼直升机气动模型源码详解及使用说明两篇文献参考,Simulink直升机非线性动力学模型,直升机动力学仿真,MATLAB Simulink版本,黑鹰单旋翼直升机气动模型,包含源码。 有两篇说明文献和使用说明, ,核心关键词:Simulink直升机非线性动力学模型;直升机动力学仿真;MATLAB Simulink版本;黑鹰单旋翼直升机气动模型;包含源码;说明文献;使用说明。,Simulink黑鹰单旋翼直升机非线性动力学模型与仿真 直升机非线性动力学模型及其仿真研究是航空工程领域中的一项重要课题。在现代航空技术中,直升机作为多功能、高机动性的飞行器,其动力学模型的精确性对于飞行控制系统的设计、性能分析以及飞行安全都有着至关重要的影响。尤其在进行直升机的非线性动力学模型研究时,需要综合考虑直升机的旋翼、机身、尾翼等多种部件的相互作用以及与环境的交互影响。 非线性动力学模型是指在动力学系统中,系统的行为不仅仅是由初始条件决定,还受到系统内部非线性因素的影响。直升机的非线性特性主要来源于旋翼的非线性气动特性、非线性动力系统与控制系统的相互作用等。为了准确地描述和分析这些非线性因素,通常需要构建复杂的数学模型,并通过仿真技术来验证模型的有效性。 Simulink是MATLAB的一个集成环境,广泛应用于多域仿真和基于模型的设计。它提供了图形化的建模、仿真和分析环境,可以模拟各种动态系统的功能和行为。在直升机非线性动力学模型的构建与仿真中,Simulink能够有效地模拟直升机在不同飞行状态下的动态响应,包括起飞、悬停、飞行和着陆等过程。 Simulink直升机非线性动力学模型涉及的关键技术包括:旋翼的动力学建模、飞行器的运动学建模、控制系统的设计以及气动模型的建立。在建立气动模型时,需要考虑空气动力学原理,如升力、阻力和侧向力等,以及它们对直升机飞行性能的影响。此外,仿真研究还包括验证模型的准确性,这通常涉及与实际飞行数据的对比分析。 本研究包含了对黑鹰单旋翼直升机气动模型的源码详解及使用说明,这为理解直升机的气动特性和非线性动力学行为提供了关键的技术支持。通过源码的分析,研究者可以深入理解直升机模型的构建过程,了解如何通过编程在Simulink中实现直升机的非线性动力学特性。 该研究还涉及了仿真模型的使用说明,这些说明对于工程师和研究人员在实际应用中操作模型、进行仿真测试以及修改和优化模型参数提供了指导。通过这些文档,可以更好地理解和运用Simulink工具箱来模拟直升机的飞行情况,进而设计出更加安全可靠的飞行控制系统。 仿真技术的应用不仅限于研究和开发阶段,在直升机的飞行训练和维护中也发挥着重要作用。利用基于Simulink的仿真模型,可以进行虚拟飞行训练,降低实际飞行训练中的风险和成本。同时,仿真模型还可以用于故障诊断和性能分析,帮助工程师及时发现并解决问题,提高直升机的维护效率和可靠性。 基于Simulink的直升机非线性动力学模型与仿真研究对于深入理解直升机的飞行特性、提高直升机的设计水平和飞行安全性具有重大意义。通过仿真技术,可以在虚拟环境中对直升机进行全面的测试和分析,为直升机的实际应用提供强有力的理论支持和实践指导。
2025-04-30 18:40:30 283KB scss
1
为使机器人具有良好的结构性能和工作性能,其结构系统必须具有良好的动力学特性.针对动力学特性问题,以ADAMS仿真软件为平台建立了简化的二自由度冗余驱动并联机器人模型,求出了运动学逆解,采用冗余驱动力控制电机的方法,完成了动力学仿真.结果表明该方法能减小驱动力变化范围和降低驱动力峰值,优化电机驱动力,提高并联机器人的驱动性能.研究所得的方法和结论具有较强的通用性,对相关冗余驱动并联机器人的动力学研究具有普遍的应用意义,同时为并联机器人的调试与控制提供了理论依据.
2025-03-25 20:52:05 1.41MB 工程技术 论文
1
该存储库包含用于跨音速导弹系统飞行动力学仿真的MATLABSimulink仿真软件。___下载.zip
2024-04-29 21:01:05 1.39MB
vensim 系统动力学 仿真
2024-01-21 13:59:24 14.79MB vensim 系统动力学
1
利用Pro/E建立了牛头刨床的三维实体模型,并通过专用接口将模型导入ADAMS中进行运动学仿真,得出牛头刨床刨头随时间变化的位移、速度、加速度曲线和动力情况,避免了传统解析法的复杂计算过程,为牛头刨床的结构设计和优化提供了参考。
1
水资源承载力是一个地区持续发展过程中各种自然资源承载力的重要组成部分,对地区综合发展和规划非常重要
2023-05-16 21:26:05 303KB 自然科学 论文
1