基于Cesium的带方向水流 / 风场效果-数据
2025-05-20 19:22:23 12.78MB Cesium 水动力模型
1
"ABAQUS有限元模拟:CEL算法下无限射流水平移动金属板材动力响应研究及视频教程资源包",ABAQUS有限元模型:基于CEL算法的无限射流水平移动下的金属板材动力响应。 使用ABAQUS有限元软件,基于CEL的耦合欧拉拉格朗日算法,模拟了一无限射流,存在竖向和水平向的初速度,高速射击金属材料板的模型,可延伸至无线水体破岩分析中,用于分析金属板、岩石的受力变形损伤,以及水流的动力响应。 包括视频教程和模型文件。 ,ABAQUS;CEL算法;无限射流;金属板材;动力响应;视频教程;模型文件;水体破岩分析。,"ABAQUS模拟无限射流下金属板材动力响应及水流动力分析"
2025-05-18 16:37:28 119KB istio
1
基于发动机动力学特性的逆动力学模型生成技术:输入扭矩转速,输出节气门开度,实现车辆纵向车速精准控制,基于发动机动力学特性的逆动力学模型生成:输入扭矩转速,输出节气门开度控制车辆纵向车速,发动机逆动力学模型生成,根据发动机动力学特性数据,生成逆动力学模型,输入扭矩转速,生成对应的节气门开度,用于车辆的纵向车速控制。 ,发动机逆动力学模型生成; 动力学特性数据; 输入扭矩转速; 节气门开度; 纵向车速控制。,发动机逆动力学模型生成技术:扭矩转速至节气门开度映射 逆动力学模型是一种基于系统动力学特性来建立的数学模型,其核心在于通过已知的输入参数推导出相应的输出控制量。在发动机领域,逆动力学模型的应用尤其广泛,尤其是在车辆的纵向车速控制上。通过逆动力学模型,可以从输入的扭矩转速参数出发,准确地计算出应控制的节气门开度,进而实现对车辆纵向车速的精准控制。 逆动力学模型的生成首先需要收集大量的发动机动力学特性数据。这些数据包括发动机在不同转速下的扭矩输出特性、节气门开度与进气量的关系、以及发动机对车速的影响等。有了这些数据后,就可以通过数学建模方法构建出发动机的逆动力学模型。 在逆动力学模型中,输入参数是发动机的扭矩和转速,输出则是节气门开度。节气门开度是控制发动机进气量的部件,进而影响到发动机的输出扭矩,最终影响车辆的加速或减速。在模型中,扭矩转速到节气门开度的映射关系被定义为一个函数或映射表,这样就可以根据实时的扭矩转速数据快速准确地计算出节气门开度,从而达到控制车速的目的。 逆动力学模型的应用可以极大地提升车辆的燃油经济性和驾驶平顺性。例如,在需要加速时,模型可以根据驾驶员的需求,计算出一个最优的节气门开度,既能满足加速的需求,又能避免不必要的燃油消耗。在需要减速时,模型同样能根据当前车速和路面情况,计算出合理的节气门开度,以实现平滑减速。 逆动力学模型的生成技术是现代汽车电子控制技术中的一个重要方面。在实际应用中,逆动力学模型通常会结合车辆的其他控制模块(如ABS防抱死系统、稳定性控制系统等)共同工作,以实现更全面的车辆动态控制。 此外,逆动力学模型生成技术在新能源汽车中也有着广泛的应用。例如,在混合动力汽车中,逆动力学模型可以根据发动机的运行状态和电池的充放电状态,精确地控制节气门开度,以实现最佳的能源管理。 在技术发展的过程中,逆动力学模型的生成也在不断地优化和改进。通过采用先进的数据处理和数学建模方法,模型的预测能力和准确性不断提高,更好地适应复杂的实际驾驶环境。 基于发动机动力学特性的逆动力学模型生成技术是一项高度复杂的工程技术,它通过数学建模和数据分析,将车辆动力系统的工作原理和控制逻辑进行抽象和模拟,为现代汽车提供了一个智能化的控制手段,使得车辆的动力系统更加高效、安全、环保。
2025-05-17 14:51:44 2.35MB
1
内容概要:本文详细介绍了如何使用MATLAB 2016a进行固定翼飞机六自由度模型的Simulink建模。首先概述了六自由度模型的概念及其重要性,然后逐步讲解了建模的具体步骤,包括创建新模型、添加和配置环境模块、飞机动力学模块、动力系统模块以及运动学求解模块。文中还展示了输入和输出变量的定义,并提供了详细的源码和四个飞机说明文件,以便于理解和维护模型。最后,通过Simulink仿真实验,验证了模型的有效性和实用性。 适合人群:航空航天工程领域的研究人员和技术人员,尤其是对飞行器动态模拟感兴趣的工程师。 使用场景及目标:适用于研究和开发固定翼飞机的动态行为模拟,帮助优化飞机设计和控制策略。通过该模型,用户可以在虚拟环境中测试不同的控制指令和环境条件对飞机性能的影响。 阅读建议:读者可以通过跟随文中的具体步骤,在MATLAB环境下动手实践,加深对固定翼飞机六自由度模型的理解。同时,利用提供的源码和说明文件,进一步探索和改进模型。
2025-05-16 00:53:18 1006KB Simulink MATLAB 飞行动力学
1
燃料电池混合动力汽车仿真模型:双输入DCDC与蓄电池管理系统研究,燃料电池混合动力汽车仿真模型研究:双输入DCDC与蓄电池管理系统研究,燃料电池电动汽车simulink模型 燃料电池混合动力汽车的仿真模型 双输入DCDC(嵌套于燃料电池汽车) 蓄电池管理系统(嵌套整车模型) ,关键词: 燃料电池电动汽车; Simulink模型; 混合动力汽车; 仿真模型; 双输入DCDC; 蓄电池管理系统; 整车模型。 关键词以分号分隔的结果为: 燃料电池电动汽车;Simulink模型;混合动力汽车仿真模型;双输入DCDC;蓄电池管理系统;整车模型。,基于双输入DCDC的燃料电池混合动力汽车仿真模型设计与分析
2025-05-13 16:50:29 2.6MB kind
1
4.2 整车基本参数模型创建 点击 Sprung mass,进入整车基本参数模版(见图 5),点击按钮 ,弹出 新建对话框,如图 4,按 3 命名规则完成命名,点击 Set 完成 HL-1 整车基本参 数模板建立。然后,按要求分别输入轴距、轮胎静力半径、整车高度、整车宽度、 质心位置、簧上质量以及转动惯量等基本参数,完成 HL-1 整车基本参数模型创 建。 图 4. Carsim 整车基本参数模型新建对话框 图 5. Carsim 整车基本参数模板 4.3 整车空气动力学模型创建 点击 Sprung mass,进入整车基本参数模板(见图 7),点击按钮 ,弹出 新建对话框,如图 6,按 3 命名规则完成命名,点击 Set 完成 HL-1 整车基本参 数模板建立。然后,按要求分别完成 Long.force、Lateral force、Vertical force、 Roll moment、Pitch moment、Yew moment 等设置,输入动力学参考点、迎风面 积以及空气密度。(此模型一般应用默认值,如果有空气动力学相关试验,可以
2025-05-13 13:11:06 6.46MB carsim 建模规范
1
内容概要:本文详细介绍了新能源动力总成台架试验室及其电力电子件建设的能力规划。主要内容涵盖动力电池、电机、电驱动总成和其他控制器的测试方法和技术细节。文中不仅讨论了硬件设施的搭建,如电池循环寿命测试系统的构建,还深入探讨了软件层面的关键技术,如用于生成动态应力测试工况的Python脚本、基于PySyft的联邦学习框架以及CANoe设备在控制器测试中的应用。此外,文章强调了数据标注和机器学习模型在试验室中的重要性,指出代码和数据处理能力是现代试验室的核心竞争力。 适合人群:从事新能源汽车研发、测试的技术人员,尤其是对动力总成和电力电子件测试感兴趣的工程师。 使用场景及目标:适用于希望深入了解新能源动力总成测试技术和电力电子件建设的专业人士。目标是掌握从硬件到软件的全面测试流程,提高测试效率和准确性。 其他说明:文章提供了多个具体的代码示例,帮助读者更好地理解和应用相关技术。同时,强调了数据处理和机器学习在现代试验室中的关键作用。
2025-05-13 12:12:31 377KB Python CANoe 联邦学习
1
新能源动力总成与电力电子件试验室能力建设规划及PPT详细内容解析,新能源动力总成台架试验室全面建设规划:动力电池、电机及电力电子件试验室布局与实施方案,新能源动力总成台架试验室能力建设规划,70页PPT 动力电池,电机,电驱动总成,其他控制器等电力电子件试验室建设 ,新能源动力总成台架试验室能力建设规划; 动力电池; 电机电驱动总成; 控制器; 电力电子件试验室建设,新能源动力总成试验室建设规划:全面推进电力电子件测试能力建设 新能源动力总成作为近年来快速发展的高新技术领域,已成为推动汽车行业发展的关键驱动力。新能源动力总成与电力电子件试验室能力建设规划是一项系统工程,涉及动力电池、电机、电驱动总成以及电力电子件的试验与测试。在这一过程中,试验室布局和实施方案的合理设计对于确保新能源动力总成的性能和可靠性具有至关重要的作用。 在新能源动力总成台架试验室的全面建设规划中,动力电池试验室的布局需要考虑电池的安全性能测试、充放电效率、循环寿命等关键指标。电机试验室则侧重于电机的效率、功率密度、温升和噪声等方面的测试。电驱动总成试验室则涵盖了综合性能测试,如扭矩特性、响应速度和系统集成效率等。电力电子件试验室则专注于控制器及其他关键电子部件的耐压、耐温、电磁兼容性等性能的测试。 新能源动力总成台架试验室的能力建设规划不仅要考虑到硬件设备的配置,还需要构建相应的测试软件平台和数据管理系统,以支持大数据环境下的信息处理与分析。这些软硬件设施的建设需要紧密结合新能源动力总成的技术发展趋势和市场需求,以确保试验室能够适应未来技术的升级和市场的需求变化。 为了全面推进电力电子件测试能力建设,新能源动力总成台架试验室必须配备先进的测试设备和仪器,如高精度电流电压测试仪、温度传感器、高速数据采集系统等。此外,试验室还需要建立严格的安全规范和操作流程,以确保测试工作的安全与精准。试验室内的布局设计应合理规划空间,以满足各项测试的特殊要求,例如高温、高压、强磁场等环境下的测试需求。 试验室的实施方案还需考虑人才培养和技术支持。通过引进和培养专业人才,提供持续的技术培训和知识更新,确保试验室运行的专业性和高效性。同时,通过与科研院所、高校及企业的合作,不断吸收最新的科研成果和技术进步,保持试验室的先进性和前瞻性。 在推进新能源动力总成台架试验室建设规划的过程中,相关管理团队需要对每个环节进行细致的规划和实施,确保项目的顺利进行。这包括对试验室建设项目的预算管理、时间规划、质量控制和风险评估等各个方面。同时,还需要建立相应的维护和更新机制,确保试验室长期处于最佳的工作状态,并能够及时适应新能源技术的快速发展。 随着新能源汽车市场的不断扩大和技术的不断进步,新能源动力总成试验室建设规划的重要性日益凸显。只有通过全面、系统的试验室能力建设,才能为新能源汽车提供强有力的技术支持和保障,推动新能源汽车行业健康、可持续的发展。
2025-05-13 11:20:11 483KB
1
基于MATLAB平台的燃料电池混合动力能量管理策略——等效氢气消耗最小化在线能量管理方法,基于MATLAB平台的燃料电池混合动力能量管理策略:等效氢气消耗最小化在线能量管理方法,等效氢气消耗最小的燃料电池混合动力能量管理策略 基于matlab平台开展,纯编程,.m文件 该方法作为在线能量管理方法,可作为比较其他能量管理方法的对比对象。 该方法为本人硕士期间编写,可直接运行 可更任意工况运行 ,等效氢气消耗;燃料电池混合动力;能量管理策略;Matlab平台;纯编程;.m文件;在线能量管理;硕士期间编写;直接运行;可更换工况。,基于Matlab编程的等效氢气消耗最小化燃料电池混合动力管理策略:在线应用与多工况适应性
2025-05-12 19:23:33 642KB 正则表达式
1
内容概要:本文介绍了利用ABAQUS软件对复合式密封垫进行动力显示分析的过程。主要内容涵盖模型介绍、材料选择(三元乙丙橡胶和遇水膨胀橡胶)、建模思路与过程、装配及遇水膨胀过程分析、本构模型(Mooney-Rivlin参数)与参数设置、接触应力的提取与分析以及后处理分析。通过这些步骤,成功复刻并优化了复合式密封垫的性能,确保其在特定环境下的可靠性和稳定性。 适用人群:从事机械工程、材料科学领域的研究人员和技术人员,特别是关注密封件设计与仿真的专业人士。 使用场景及目标:适用于需要对复合式密封垫进行精确模拟和性能评估的场合,旨在提升产品设计的质量和效率,确保密封件在各种工况下都能保持良好的性能。 其他说明:文中详细探讨了各环节的具体实施方法及其背后的原理,为相关领域的研究提供了宝贵的参考资料。
2025-05-12 13:54:03 363KB
1