为了将图像中内容特征相近的像素尽可能分割到同一区块,提高图像分割的针对性和自适应性,提出了一种基于有序数据聚类的图像自适应分条算法。该算法首先计算图像中所有像素点的梯度值,相加每列像素梯度值得到列累积能量;然后对能量数据进行加权平滑生成连续曲线,用该平滑曲线的凹凸性自适应确定图像分条总数;最后构造图像列累积能量数据的条件距离矩阵,由已确定的分条数采用系统聚类的方法实现图像分条。分条实验结果对比表明,提出的算法能根据不同图像内容自适应地进行图像条分割,且将分条结果应用于图像内容感知缩放研究中可获得满意的缩放效果,因此该算法能较好地对图像内容进行分类和识别。
1
针对快速鲁棒特征(SURF)算法的拼接结果图像,会出现明显的拼接线与过渡带的问题,提出一种改进的基于SURF特征匹配的图像拼接算法。在剔除误配点时,采用改进的随机抽样一致(RANSAC)算法调整采样概率,以更少的时间获取正确模型,提高算法效率。在图像融合时,先对输入图像进行亮度均衡预处理,然后再使用加权平滑算法进行融合,从而消除结果图的拼接线和过渡带,提高图像拼接质量。实验表明,改进算法能保持SURF算法的优良特性,进一步提高SURF算法匹配效率,并能有效消除拼接线和过渡带,使图像拼接质量得到显著提高。
1