内容概要:本文详细介绍了11kW车载充电机(OBC)的三相功率因数校正(PFC)仿真模型,重点探讨了使用PLECS进行仿真建模的方法和技术细节。主要内容包括:① 如何导入MOSFET的Spice模型并设置热参数,实现对管子损耗和结温的精确仿真;② 控制环路的设计,尤其是SPWM调制配合电压外环和电流内环的具体参数调整方法;③ 损耗计算的技术要点,强调了开关损耗和导通损耗的区别及其占比;④ 实战经验和常见错误,如仿真步长的选择和散热器参数的正确设定。通过这些内容,展示了如何利用PLECS高效地完成高精度的PFC仿真。 适合人群:从事电力电子设计、仿真工作的工程师和技术人员,尤其适用于对三相PFC技术和PLECS仿真工具有一定了解的专业人士。 使用场景及目标:① 需要在项目中构建高效的三相PFC仿真模型;② 希望深入了解PLECS仿真工具的功能和应用技巧;③ 掌握MOSFET Spice模型的导入和热参数设置方法;④ 学习如何优化控制环路参数以提高系统性能。 其他说明:文中提供了具体的配置代码和参数设置实例,有助于读者快速上手实际操作。同时,作者分享了丰富的实战经验,帮助避免常见的仿真陷阱。
2025-07-29 08:49:14 531KB
1
"基于Heric拓扑的逆变器离网并网仿真模型:支持非单位功率因数负载与功率因数调节,共模电流抑制能力突出,采用PR单环控制与SogiPLL锁相环技术,LCL滤波器,适用于Plecs 4.7.3及以上版本",#Heric拓扑并离网仿真模型(plecs) 逆变器拓扑为:heric拓扑。 仿真说明: 1.离网时支持非单位功率因数负载。 2.并网时支持功率因数调节。 3.具有共模电流抑制能力(共模电压稳定在Udc 2)。 此外,采用PR单环控制,具有sogipll锁相环,lcl滤波器。 注:(V0004) Plecs版本4.7.3及以上 ,Heric拓扑; 离网仿真; 并网仿真; 非单位功率因数负载; 功率因数调节; 共模电流抑制; 共模电压稳定; PR单环控制; SOGIPLL锁相环; LCL滤波器; Plecs版本4.7.3以上。,"Heric拓扑:离网并网仿真模型,支持非单位功率因数与共模电流抑制"
2025-07-16 11:42:25 714KB 数据仓库
1
三相SVPWM整流器仿真与双闭环PI控制:电压外环与电流内环的讲解,输出电压调节至700V,单位功率因数运行及负载实验详解。,三相SVPWM整流器仿真讲解:双闭环PI控制实现单位功率因数运行与负载实验,三相电压型SVPWM整流器仿真matlab simulink,双闭环pi PI控制(电压外环电流内环),输出电压700V,(可自行调节)单位功率因数1运行,含负载实验。 资料讲解。 ,三相电压型SVPWM整流器;Matlab Simulink仿真;双闭环PI控制;单位功率因数运行;负载实验。,Matlab Simulink仿真:三相电压型SVPWM整流器双闭环PI控制策略与实践
2025-06-27 16:13:13 3.48MB
1
填谷式无源功率因数校正(PFC)电路是一种用于改善电力系统功率因数的电路设计方法,特别是在交流(AC)输入电源供电的照明设备中。功率因数是一个衡量交流电路中电压波形和电流波形相位匹配程度的指标,功率因数的高低直接影响到电能的有效利用率。在照明领域,提高功率因数可以减少电流谐波,减少能量损耗,并且可以达到环保与节能的效果。 在介绍填谷式无源PFC电路之前,首先要了解传统的桥式整流电解电容滤波电路。这种电路通常由一个桥式整流器和一个或多个大容量电解电容器组成。桥式整流器利用四个二极管将交流电压转换为脉动直流电压,再通过电容器平滑化处理得到一个相对稳定的直流输出。然而,这种方法存在的问题是整流后的电流波形会与电压波形产生严重的相位偏移,形成一个失真的波形。失真的电流波形会导致输入功率因数下降,同时谐波电流的增加可能会引起电磁干扰,不符合相关的国际标准。 为了改善这种电流失真,提高功率因数,填谷式无源PFC电路被提出作为解决方案。填谷式无源PFC电路主要由几个二极管和至少两个等值电容器组成,其作用是通过一系列电子开关控制来整流输入电压,使得电流波形得以改善。在该电路中,二极管D6的接入使得电容C1和C2在交流电压较高时以串联方式充电。当交流电压降低到低于电容器充电电压的一半时,二极管D6反向偏置,D5和D7导通,电容C1和C2开始以并联方式向负载放电。这个过程导致了输入电流的失真得到改善,输入电流的导通角增加,从60度增加到120度甚至更高。因此,填谷式无源PFC电路不仅能够修正输入电流,而且能够将线路功率因数提高至0.9以上,大幅降低3次和5次谐波电流,降低总谐波失真(THD)至30%以下。 在LED照明领域,填谷式无源PFC电路有着广泛的应用。由于LED驱动器通常需要稳定的直流电流来驱动LED,填谷式无源PFC电路能够提供符合要求的电流,同时满足高性能离线式LED照明电源的基本要求。这些要求包括AC输入谐波电流符合IEC61000-3-2标准、功率因数满足能源之星SSL的规定、电磁干扰符合EN55015B的限制、高能效、低成本高可靠性,以及能够为LED提供恒流驱动。 使用填谷式无源PFC电路的优点包括其电路设计相对简单和成本低廉。虽然主动式PFC电路(有源PFC)在性能上可能优于无源PFC电路,但在某些应用场景中,填谷式无源PFC电路由于其成本效益而成为了一个理想的选择。特别是在LED照明应用中,填谷式无源PFC电路的引入能够显著改善线路功率因数,降低谐波失真,从而帮助照明设备更有效地利用电能,减少不必要的损耗,并且提高整体的电能质量。
2025-06-26 15:44:11 185KB
1
内容概要:本文档是2013年全国大学生电子设计竞赛的试题,详细介绍了单相AC-DC变换电路的设计任务与要求。该电路旨在将220V交流电转换为稳定的36V直流电,输出电流额定值为2A。基本要求包括确保输出电压稳定、负载调整率和电压调整率不超过0.5%,以及设计功率因数测量电路和过流保护功能。发挥部分则提出了更高的性能指标,如功率因数校正至不低于0.98、效率不低于95%,并能自动调整功率因数。此外,文档还提供了评分标准、设计报告的具体要求及测试方法。 适合人群:面向参加全国大学生电子设计竞赛的本科组学生,特别是对电力电子技术感兴趣的电气工程及相关专业学生。 使用场景及目标:①帮助参赛学生掌握单相AC-DC变换电路的设计与制作方法;②提升学生对电路性能优化的理解,如提高效率、功率因数校正等;③培养学生的团队协作能力,严格按照竞赛规则完成任务。 阅读建议:在准备竞赛过程中,学生应仔细研读文档中的各项要求,理解每个技术指标的意义和实现方法,同时注意设计报告的撰写规范,确保实验数据真实可靠,并能清晰表达设计方案和技术细节。
1
提出了一种新型的功率因数校正单元(flyback+boost单元)。这种功率因数单元具有两种工作状态,反激变换器状态和boost电感状态。基于这种PFC单元,得到了一种新型的单级功率因数校正变换器,实验结果证明这种变换器不仅可以得到很高的功率因数,而且可以自动限制储能电容上的电压。
2025-04-23 14:13:17 129KB 电源管理
1
三相三电平Vienna整流器调制技术及其控制的综合仿真研究:基于SPWM与SVPWM的中点电压平衡与功率因数控制分析,三相三电平Vienna整流器调制技术及控制策略的仿真研究——基于Plecs平台的SPWM与SVPWM对比分析,三相三电平vienna整流器SPWM和SVPWM调制仿真 基于plecs搭建 双PI控制 锁相环控制 中点电压平衡控制 功率因数为1 载波比较方式产生调制波 function搭 70yuan SPWM和SVPWM调制对比 谐波畸变率对比分析 电压利用率对比分析 电压平衡和不平衡控制对比 图1 仿真模型 图2 交流电压 电流 图3 直流侧电压 图4 不加平衡控制的上下电容电压 图5 加平衡控制的上下电容电压 ,三相三电平Vienna整流器; SPWM; SVPWM调制; PLECS搭建; 双PI控制; 锁相环控制; 中点电压平衡控制; 载波比较方式; 功率因数1; 调制波; 谐波畸变率对比; 电压利用率对比; 电压平衡与不平衡控制对比; 仿真模型图; 交流电压电流图; 直流侧电压图; 上下电容电压图。,三相三电平Vienna整流器:SPWM与SVP
2025-04-22 11:30:46 2.04MB
1
内容概要:本文详细介绍了基于PR(比例谐振)控制器的并网逆变器设计及其在实现单位功率因数方面的优势。PR控制器相比传统的PI控制器,在跟踪交流信号时能够消除稳态误差,确保电流与电压同相位。文中通过理论分析、数学模型展示以及具体代码实现,解释了PR控制器的工作原理和应用场景。同时探讨了锁相环(PLL)、谐振项带宽调节等关键技术细节,并提供了实验数据验证其优越性能。 适合人群:从事电力电子、自动化控制领域的工程师和技术人员,尤其是关注并网逆变器设计与优化的专业人士。 使用场景及目标:适用于需要提高并网逆变器性能、改善电能质量和增强系统稳定性的场合。目标是通过采用PR控制器实现高精度的电流控制,达到单位功率因数,从而减少能量损失和提高效率。 其他说明:文章不仅涵盖了理论知识,还给出了具体的实现方法和调试技巧,有助于读者更好地理解和应用这一先进技术。
2025-04-14 15:16:50 516KB
1
针对煤矿地面10kV供电系统,将10kV链式STATCOM应用于电网中。设计了STATCOM的主电路拓扑结构、调制方法,将载波层叠调制方式应用于STATCOM中,不仅可以等效提高IGBT的开关频率,而且输出的谐波含量少。
2024-11-12 15:41:53 615KB 10kV STATCOM 载波层叠 功率因数
1
为了解决传统绕线式异步电机调速控制方式存在效率低、范围窄、功率因数低的缺点,提出绕线式异步电机双馈调速系统,系统应用了SVPWM控制技术,通过双PWM变换器来控制转子回路,设计出了电压、电流双闭环控制策略,同时还建立了电机双馈运行时的数学模型,实现了转速、电流双闭环转子的控制策略。测试结果表明,此系统有效可行。
1