### Doherty功率放大器研究与设计 #### Doherty功率放大器原理及设计要点 Doherty功率放大器作为一种高效、高性能的功率放大技术,在现代无线通信领域扮演着极其重要的角色。尤其对于高线性度和高效率要求的应用场景,如WCDMA基站等,Doherty技术的应用更是不可或缺。 ##### 1. Doherty功率放大器原理概述 Doherty功率放大器的基本结构由两个功率放大器组成:主放大器和辅助放大器。其中,主放大器通常工作在B类或AB类模式,而辅助放大器则工作在C类模式。这种结构的特点在于,当输入信号较小时,仅主放大器处于工作状态;随着输入信号增加,到达设定阈值后,辅助放大器开始参与工作,从而实现了在整个动态范围内保持较高的效率。 - **主放大器**:负责处理大部分的信号功率,并通过90°四分之一波长线实现阻抗变换,以确保在辅助放大器工作时能够降低视在阻抗。 - **辅助放大器**:在特定条件下激活,通过提供额外的功率支持来进一步提升整体系统的输出功率。辅助放大器的加入使得主放大器的负载降低,进而能够在主放大器输出电压饱和的情况下,通过增加流过负载的电流来提高输出功率。 这种独特的设计使得Doherty功率放大器能够在回退状态下仍保持较高的效率,尤其是在峰值功率的一半左右时达到最佳效率点。 ##### 2. Doherty功率放大器的设计流程 设计一款性能优异的Doherty功率放大器,需要经历以下步骤: - **选择合适的元件**:根据设计指标(例如额定功率30W,输出增益50dB,工作频率2110~2170MHz等),选择适合的功率放大器。本案例中选择了摩托罗拉的LDMOS管MRF21060作为核心元件,该管件在最大功率工作时的总功率可达120W,回退至30W时仍能保持高效率。 - **确定静态工作点**:为了实现Doherty结构的功能,需要分别设置主放大器和辅助放大器的工作点。主放大器通常工作在AB类模式,而辅助放大器则工作在C类模式。通过静态工作点扫描,选定合适的偏置条件以满足Doherty技术的要求。 - **阻抗匹配设计**:通过精确的阻抗匹配网络设计,确保放大器能够在所需的频率范围内高效运行。这一过程包括主放大器和辅助放大器之间的匹配,以及它们与外部负载之间的匹配。 - **90°合路器设计**:设计90°相位移合路器以确保两个放大器输出信号的同相叠加。这是实现Doherty结构的关键组成部分之一,对于维持系统的整体性能至关重要。 Doherty功率放大器的设计涉及多个关键步骤和技术要点,通过合理选择元件、精细调整工作点并优化匹配网络,可以实现既高效率又高线性度的目标。这一技术在现代通信系统中展现出巨大的潜力和应用价值,特别是在追求高效率和高性能的无线通信领域。
2024-09-03 10:12:15 162KB Doherty功放
1
电子设计大赛相关的资源。 如果您觉得这些免费资源对您有帮助的话,我会非常感谢您的支持,您可以考虑给我点赞或关注,这将是对我分享内容的一种鼓励,也会让我更有动力继续分享更多有价值的资源。非常感谢您的关注和支持!
2024-05-11 10:39:49 1.01MB 电子设计大赛
1
功放进入了数字时代。数字功放的关键部分集成电路已经达到了较高水准,如TDA7482数字功放有效地降低了信号间的干扰、可实现高保真。虽然核心技术解决了,但印制线路板(PCB)布线不当,也很难达到理想的效果。笔者在TDA7482数字功放的PCB设计过程中总结了一点经验,现就PCB设计应遵守的布线原则及抗干扰设计要求与电磁兼容性要求作简要分析介绍。   1、数字功放的概况及发展 数字功放的基本电路是早已存在的D类放大器(国内称丁类放大器)。以前,由于价格和技术上的原因,这种放大电路只是在实验室或高价位的测试仪器中应用。这几年的技术发展使数字功放的元件集成到一两块芯片中,价格也在不断下降。理论证明,D类放大器的效率可达到100%。然而,迄今还没有找到理想的开关元件,难免会产生一部分功率损耗,如果使用的器件不良,损耗就会更大些。但是不管怎样,它的放大效率还是达到90%以上。此外,数字功放具有失真小、噪音低、动态范围大等特点,在音质的透明度、解析力,背景的宁静、低频的震撼力度方面是传统功放不可比拟的。数字功放和DC一DC开关型逆变电路类似。输入的音频模拟信号经过PWM电路调制处理后,形成占空比同输入信号成一定比例的脉冲链,经过开关电路放大后,由低通滤波器滤除高频成分,还原出已放大的输入信号波形,由扬声器放音。
2024-05-11 10:34:20 3.71MB
1
音频功放电路图TA7232P
2024-04-13 20:49:48 20KB
1
电子管功放 300B_2A3电子管功放的制作资料合集 电子管功放 300B_2A3电子管功放的制作资料合集
2024-02-06 03:17:52 16.39MB
1
1、A类功放(又称甲类功放) A类功放输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无讯号输入它们都保持传导电流,并使这两个电流等于交流电的峰值,这时交流在最大讯号情况下流入负载。当无讯号时,两个晶体管各流通等量的电流,因此在输出中心点上没有不平衡的电流或电压,故无电流输入扬声器。当讯号趋向正极,线路上方的输出晶体管容许流入较多的电流,下方的输出晶体管则相对减少电流,由于电流开始不平衡,于是流入扬声器而且推动扬声器发声。 A类功放的工作方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失真(Switching Distortion),即使不施用负反馈,它的开环路失真仍十分低,因此被称为是声音最理想的放大线路设计。但这种设计有利有弊,A类功放放最大的缺点是效率低,因为无讯号时仍有满电流流入,电能全部转为高热量。当讯号电平增加时,有些功率可进入负载,但许多仍转变为热量。 A类功放是重播音乐的理想选择,它能提供非常平滑的音质,音色圆润温暖,高音透明开扬,这些优点足以补偿它的缺点。A类功率功放发热量惊人,为了有效处理散热问题,A类功放必须采用大型散热器。因为它
2024-01-18 09:53:53 68KB 功率放大器 模拟电路
1
146种TDA、 STK、 TA、 UPC、 AN、 LA、 KA系列集成功放,典型电路图,欢迎下载
2024-01-18 08:24:22 2.5MB
1
1、引言  开关电源以体积小,重量轻,功耗低,效率高,纹波小,噪声低,智能化程度高,易扩容等,逐渐替代工频电源,广泛应用于各种电子设备。高可靠性、智能化及数字化是开关电源的发展方向。音响功放要求电源随着负载变化自动调整输出电压,进而调节功率,以提高电源动态性能,降低音响功放内部损耗,但目前的开关电源无法实现。选用TMS320F2812型DSP作为功放开关电源的主控制器,设计一种低功耗。适用于大型功放系统的新型的智能功放开关电源。  2、智能功放开关电源设计  图1为智能音响功放开关电源的总体原理框图,主电路采用交一直一交一直的结构。输入工频220 V交流电路经滤波电路后,再经单相桥式整流电路输
2024-01-14 12:19:21 362KB
1
功放一通电电容发热,这里没有说明是什么电容,因为功放电路中的电容是非常多的。比较容易发热的一般为电源电路中的电容,这里的电容主要起到滤波的作用。正常使用时,电容是会发热的,但是不会太明显。如果出现了温度过高的情况,应该检查电容本身及周边电路。 电容的滤波作用实际上是利用了电容最基本的充放电作用,利用电容的储能,电压不能突变的作用把脉动的直流电压滤波成相对平滑的直流电压。另外,由于功放电路会出现瞬间的大功率,也会由电容储能提供瞬间放电,保证不会因为瞬间功率上升造成输出声音失真,功放电路中的滤波电路有些会使用电容与电感组合而成的π型滤波。 如果由于原来电容出现损坏后出现的发热问题,应确认更换的电容品质是否存在问题,耐压是否足够等。如果是原电路中使用的电容出现的问题,有可能存在以下几个原因: 一种可能性是电容长时间工作在高温环境,造成内部压力过大、电解液干涸,已经接近失效状态,这种情况首先将电容拆下后使用万用表测量下容量; 第二种可能是整流电路中的二极管存在问题,造成整流后的波形出现畸变,这种问题需要使用示波器观察输出波形是否正常; 第三种可能要考虑负载部分电路是否存在问题,负载功
2024-01-13 17:15:39 69KB 模拟电路
1
ADS使用记录之超宽带功放设计
2023-11-30 08:35:28 29.3MB
1