光电探测器前置放大电路设计是将光信号转化为电信号的关键环节。光电探测器,特别是光电二极管,能将光功率转化为电流。然而,实际应用中并非像简单电路所示,直接用电阻取样光电二极管的输出电流就能得到理想的电压信号。其中涉及多个因素,包括暗电流、噪声、响应速度以及后级电路匹配等复杂问题。 光电探测器存在暗电流,即使在无光照情况下也会有电流产生,这可能导致信号干扰。取样电阻的选择是个权衡过程,电阻过大将增加噪声,过小则可能降低信号电压,同时影响响应速度。光电探测器的PN结电容与取样电阻构成RC充电回路,影响响应速度。VCC电压的稳定性直接影响结电容,进而影响响应度,不稳定的电源可能导致噪声增加。 为了改善响应速度,可以通过减小取样电阻来减小RC时间常数,但这样会牺牲响应幅度。此外,较大的取样电阻虽然有利于捕捉微弱信号,但会增加输出阻抗,对后级放大电路造成负担,要求后级电路具有高输入阻抗以获取更多信号能量。 光电探测器的结构包括光生电流源和结电容,反偏电压增大可以减小结电容,提高响应速度。然而,半导体工艺中的寄生电阻会产生暗电流,无偏用法可以消除暗电流,提供良好的线性度和较低噪声,适合微弱光信号检测。有偏用法则通过施加偏压减小结电容,提高响应速度,但会引入暗电流,适用于速度优先的场景。 在有偏用法中,可能遇到运算放大器输出振荡的问题,这是因为结电容引起的信号延迟。解决办法是在反馈电阻上并联电容进行补偿。然而,实际应用中的运算放大器并非理想器件,输入级的偏置电流可能影响输出,导致异常现象,如高直流电平或零输出。 光电探测器前置放大电路设计需综合考虑多个因素,包括噪声抑制、响应速度、后级匹配以及实际器件特性。通过适当的设计和补偿策略,可以实现对不同光信号的高效检测。
2024-11-19 17:43:08 214KB
1
1、 设计任务 设计并制作有一定输出功率的话音放大电路。 2、 基本要求 (1) 电路采用5V单电源供电; (2) 前置放大器由两级放大器构成,其中放大器1的增益为20dB,放大器2的增益为20dB,增益均可调; (3) 带通滤波器:通带为300Hz~3.4kHz ; (4) 输出额定功率P>0.3W,失真度<10%;负载额定阻抗为8Ω。
1
光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高检测系统输出信号的信噪比。   1 光电检测电路的基本构成   光电探测器所接收到的信号一般都非常微弱,而且光探测器输出的信号往往被深埋在噪声之中,因此,
1
热释电红外探测器前置放大电路设计,陆鹏,龚荣洲,针对热释电型红外探测器响应信号微弱﹑工作频率低﹑高阻抗的特点,本文提出了一种具有电路自举效应的热释电型红外探测器前置放大
2022-10-19 15:54:46 252KB 热释电探测器
1
摘要:针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构的微弱信号检测前置放大电路。结合微弱信号的特点讨论了电路中噪声的抑制和隔离,提出了电路元件的选择方法与电路设计中降低噪声干扰的注意事项。本文利用集成程控增益仪表放大器PGA202设计了微弱信号检测前置放大电路,并利用微弱低频信号进行了测试,得到了理想的效果。   1、引言   精准农业主要是依据实时获取的农田环境和农作物信息,对农作物进行精确的灌溉、施 肥、喷药,最大限度地提高水、肥和药的利用效率,减少环境污染,获得最佳的经济效益和 生态效益[1]。农田环境和农作物信息的准确获取取决于
1
在弱光检测中,光经过光电探测器转换为电信号,此信号极其微弱。要实现光电转换,并有效地利用这种信号,必须对光电器件采取适当偏置,然后再将已转换的电信号进行放大处理。对光电导器件、光伏型探测器、光电流型探测器的前置电路进行研究与设计。根据不同种类的探测器及探测光信号的频率特性选取不同的偏置与放大电路,使前置电路的性能达到最优。
2022-07-12 21:13:15 303KB 测试测量仪器
1
光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检
2022-06-02 20:48:23 152KB 放大电路
1
multisim仿真文件,采用OPA2227芯片实现前置滤波放大设计。
2022-02-18 18:12:29 424KB multisim 低通滤波 前置放大 仿真
1
压电式电容型传感器在工作时能输出正比于被测物理量的电荷量,具有较好线性度的同时也具有较高灵敏度,在许多领域中都得到了广泛应用,但该类传感器在工作时所产生的电荷量通常比较微弱,需要对其适当放大以便后续进行处理。通过分析压电式电容型传感器的等效电路模型,结合电路理论和Multisim仿真,设计了前置放大电路。由于该前放电路主要针对小信号的放大需求进行设计,在大信号输入时输出信号会产生畸变。而在实际工程应用中,常出现输入信号中小信号和大信号并存的情况。为了能够对输入信号动态范围较大时的小信号和大信号都实现无失真放大,改进了之前的前置放大电路设计,对其进行了Multisim仿真和实验电路测试。结果表明改进后的前置放大电路在输入信号频率为10 kHz时,其输入信号电压幅值最高可达600 mV,且小信号和大信号的放大均无失真,放大倍数也基本相同,说明该电路设计实现了高动态范围的输入信号的无失真放大需求。
2021-11-27 22:28:18 1.16MB 放大电路
1