清华大学自然语言处理实验室刘知远的PPT面向法律智能的自然语言处理
2022-08-10 18:20:25 4.78MB 法律智能 自然语言处理
1
刘知远 - 知识表示学习研究进展,包括知识表示,表示学习,知识图谱
2021-12-28 15:01:54 3.2MB KG
1
老师的github上有
2021-08-06 13:07:19 22.34MB 资源达人分享计划 NLP 科研
1
Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool.
1