随着轨道交通网络规模的扩大和列车运营间隔的缩短,列车牵引能耗在快速增加。因此,通过优化列车的驾驶策略降低牵引能耗,对于轨道交通系统的节能减排具有重大意义。针对列车的驾驶策略优化问题,提出一种基于深度 Q 网络(DQN)的列车节能驾驶控制方法。首先介绍了传统的列车节能驾驶问题并构造其反问题,即通过分配最少的能耗达到规定运行时分。进一步将该问题转化为有限马尔可夫决策过程(MDP),通过设计状态动作值函数、定义动作策略选取方法等,构建基于 DQN 方法的列车节能驾驶控制方法。通过实际驾驶数据对DQN 进行训练,得到最优的状态动作值函数,并通过该值函数确定最优的能耗分配方案,从而得到最优驾驶策略。最后,以北京地铁亦庄线的实际运营数据设计了仿真算例,对方法的有效性进行验证,并对方法参数进行了敏感度分析。提出的方法可充分利用列车的驾驶数据提升驾驶策略,降低列车牵引能耗,对未来我国智慧城轨的发展具有一定的借鉴意义。
2021-07-18 22:42:35 2.06MB 列车节能驾驶 驾驶策略 深度Q网络
1