unctional Testing: Classification-Tree Method and Classification-Tree Editor TESTONA This page contains papers on the classification-tree method and the classification-tree editor. The classification-tree method is a testing method for the systematic design of test cases on basis of the specification. The classification-tree editor is a graphical editor supporting the application of the classification-tree method. Both are widely used in industrial practice. First papers on classification-tree method and classfication-tree editor were published in 1993 by Grimm, Grochtmann and Wegener. New enhancements were recently published by Berner
2023-03-08 11:53:33 26.12MB CTE XL 分类树 测试
1
决策树学习是数据挖掘中常用的方法。 大多数商业软件包提供复杂的树分类算法,但它们非常昂贵。 这个 matlab 代码使用“classregtree”函数来实现 GINI 算法来确定每个节点 (CART) 的最佳分割。 这段代码的主要功能名为Tree。 它直接从 excel 或 csv 文件导入数据,使用第一行作为变量名(必要)。 第一列是结果组,它必须是数字。 在 Matlab 工作区中启动分类树类型: Tree('filename.xls') 或 Tree('filename.csv') (注意您的 excel 文件包含第一行变量名称和第一列中的结果组) . 它也可以直接从 matlab 文件(.mat 扩展名)导入。 请使用以下 3 个变量创建一个文件:X(协变量值矩阵)、y(结果值)、textdata(单元格结构包含结果和协变量的文本名称)。 如果您需要示例,请输入:[X, y,
2022-08-10 11:45:50 1.54MB matlab
1
很棒的决策树研究论文 精选的决策,分类和回归树研究论文清单,包括来自以下会议的实现: 机器学习 计算机视觉 自然语言处理 数据 人工智能 关于,,,和论文的类似集合以及实现。 2020年 DTCA:可解释的索赔验证基于决策树的共同注意网络(ACL 2020) 吴连伟,袁Yuan,赵永强,梁浩,安布琳·纳齐尔 隐私保护梯度提升决策树(AAAI 2020) 李勤彬,吴兆敏,温则宜,何炳生 实用联合梯度提升决策树(AAAI 2020) 李勤彬,温则宜,何炳生 最优决策树的有效推断(AAAI 2020) 弗洛伦特·阿韦拉内达(Florent Avellaneda) 使用缓存分支和边界搜索学习最佳决策树(AAAI 2020) 盖尔·阿格林(Gael Aglin),齐格弗里德·尼森(Pierre) 决策树集合分类器的抽象解释(AAAI 2020) 弗朗切斯科·朗佐托(Marco Zanella) (多任务)梯度增强树的可扩展功能选择(AISTATS 2020) Cuize Han,Nikhil Rao,Daria Sorokina,Karthik Subbia
1
本文实例讲述了php+mysql查询实现无限下级分类树输出。分享给大家供大家参考,具体如下: 这里介绍的php结合mysql查询无限下级树输出,其实就是无限分类。给各位整理了几个php无限分类的例子. 树输出: function get_array($user_id,$top=0){ global $mysql,$_G; $sql = select user_id as name from `{spreads_users}` where p1.spreads_userid='{$user_id}'; $rows= $mysql->db_fetch_arrays($sql); i
2022-05-06 14:25:06 69KB hp mysql php
1
1.数据集的获取。 使用SCIKIT-LEARN的自带的鸢尾花数据集,获取该数据集150个样本的后两个特征及相应类别标签。 2.数据集的最小包围盒的获取,以及数据集的划分。 (1)获取原始二维空间中150个样本的最小包围矩形[x1_min, x1_max]*[x2_min,x2_max],并记录有关参数值。 (2)将数据集按照类别标签分层随机打乱,基于hold-out法,构建训练集(80%)与测试集(20%) 3. 模型的学习。 利用训练集,学习两种复杂程度不同的CART分类树,可视化两个分类树的学习结果。 4. 基于测试集的分类树的评价。 (1)结合测试集各样本的类别预测结果及真实类别答案,生成混淆矩阵,并可视化混淆矩阵 (2)基于混淆矩阵,估计每个类别的查准率、查全率、F1值,以及宏查准率、宏查全率、宏F1值;估计总体预测正确率. 5. 分类树的使用。 (1)在原始二维空间的矩形区域[x1_min-1, x1_max+1]*[x2_min-1,x2_max+1]内,分别在水平、垂直方向以0.02为间隔,细分生成离散格子点。 (2)分别以每个格子点作为一个待决策样本,对其分类
2022-04-27 16:05:35 5KB 分类 sklearn 数据挖掘 人工智能
1
使用R的集成方法 ######我已经完成了关于集成方法的个人项目(论文)。 首先,我对不同的集成方法进行了背景研究,然后在基础机器学习算法上实现了Boosting,AdaBoost,Bagging和随机森林技术。 我使用了提升方法来提高弱小的学习者(如决策树桩)的性能。 为决策树(包括回归和分类问题)和KNN分类器实施装袋。 将随机森林用作分类树。 我已经在使用不同阈值的逻辑回归算法上实现了一种特殊的增强算法,称为“ AdaBoost”。 然后绘制不同的图形,例如错误率与增强,装袋和随机森林迭代的关系。 比较装袋与提振的结果。 在应用集成方法之前和应用集成方法之后,分析了分类器的性能。 使用了诸如交叉验证,MSE,PRSS,ROC曲线,混淆矩阵和袋外误差估计之类的不同模型评估技术来评估集成技术的性能。
2021-12-29 22:46:40 12KB R
1
新增了一些功能,更方便后台人员使用新增了一些功能,更方便后台人员使用新增了一些功能,更方便后台人员使用
2021-11-24 08:05:52 53KB treeview 无限分类树
1
python决策分类树的代码以及所使用的数据集,代码是自己的实现的,并且可以自动生成决策树。11111
2021-10-06 12:00:13 60KB 机器学习
1
破产机器学习 破产数据研究的目的是为给定数据确定预测破产的最佳分类方法。 破产数据是从COMPUSTAT收集的1980年至2000年的数据,其中有5436个观察值和13个变量。 9个基于会计的变量和1个市场变量是:R1:WC / TA,营运资金/总资产R2:RE / TA,未分配利润/总资产R3:EBIT / TA,息税前利润/总资产R4:ME / TL,权益/总负债的市场价值R5:S / TA,销售/总资产R6:TL / TA,总负债/总资产R7:CA / CL,流动资产/流动负债R8:NI / TA,净收入/总资产R9:破产成本,对数(销售)R10:市值,对数(绝对(价格)*流通股数/ 1000) 对于本研究,由于没有明显的破产趋势,因此可以假定可以将多年来的数据汇总在一起并进行研究。 在这13个变量中,其中一个是“ DLRSN”-一种表示默认值的分类变量,即预测的因变量。 总体而
1
SpotifyAnalysis:分析了Kaggle上的Spotify数据集,以预测歌曲和流派特征以及理想的发行月份,以使用逻辑回归,K-均值聚类和分类树在Spotify上最大限度地提高歌曲的知名度
2021-09-20 13:34:05 1.89MB
1