软件需求分析案例.docx
2024-05-24 11:39:40 149KB 文档资料
1
力窃漏电用户自动识别 1.背景与数据分析目的 a.通过电力系统采集到的数据,提取出窃漏电用户的关键特征, b.构建窃漏电用户的识别模型:以实现自动检查、判断用户是否是存在窃漏电行为。 2.数据预处理 通过对拿到的数据进行数据质量分析,检查原始数据中存在的脏数据,通过查看原始数据中抽取的数据,发现存在数据缺失的现象,使用朗格拉日插值法:选取缺失值前5个数据作为前参考组,缺失值后5个数据作为后参考组,处理缺失值程序. 3.挖掘建模 从专家样本中随机选取20%作为测试样本,剩下的80%作为训练样本,初步选择常用的分类预测模型:CART决策树和LM神经网络。 3.1 构建CART决策树模型 3.2 LM神经网络模型 3.3 CART和LM模型对比 结论:LM神经网络的ROC曲线比CART决策树更加靠近单位方形的左上角且LM神经网络的ROC曲线下的面积更大,则LM神经网络预测模型的分类性能更好,更适合应用于窃漏电用户自动识别当中。 将处理后的数据作为模型输入数据,利用构建好的模型(位于工程的tmp中)计算用户的窃漏电结果,并与实际调查结果做对比,对模型进行优化,进一步提高识别准确率。 ——
2024-05-17 16:13:17 116KB 数据分析 数据挖掘 python
通过tableau,建立可视化仪表盘,将北京地铁线路与周边美食休闲娱乐数据结合,生成地铁线路图,圆点表示周边分布娱乐设施密集程度。并且通过仪表盘,将四张工作表联动,任意筛选四张表中的一张数据,可得到另外三张相对应的数据。
2023-12-24 20:29:11 1.05MB tableau 北京地铁 数据分析
1
MATLAB统计分析与应用40个案例分析,是一本基于实例讲解专业教材
2023-09-22 09:34:54 17.45MB MATLAB 统计分析 案例分析
1
如果您正在寻找一份完整的R语言数据分析、数据预测和机器学习案例,那么我们的资源库将为您提供一切所需。本资源库提供了一系列案例,包括数据可视化、数据清洗、机器学习模型构建和数据预测等内容。我们的案例旨在帮助您更好地了解R语言的使用和机器学习的基础知识。 我们的资源库包括以下主题: 数据可视化:使用ggplot2包和其他R语言可视化工具,展示如何将数据可视化,从而更好地理解数据并做出更明智的决策。 数据清洗:展示如何使用dplyr包和其他数据清洗工具来清洗和准备数据,使其可以用于机器学习模型的训练。 机器学习模型构建:使用caret包和其他机器学习工具,构建和训练各种类型的机器学习模型,包括回归、分类和聚类模型等。 数据预测:展示如何使用机器学习模型来预测未来数据,并对预测结果进行评估和优化。 每个案例都包含完整的代码和数据集,可以帮助您更好地了解每个步骤的细节和操作。我们的资源库适合各种级别的用户,包括初学者和有经验的用户。您可以根据自己的兴趣和需求选择不同的主题,并按照自己的步骤和想法来运行代码和修改案例。 如果正在寻找一份完整的R语言数据分析、数据预测和机器学习案例,
2023-05-24 10:51:57 2KB r语言 数据分析 机器学习
1
本文介绍了电商数据分析案例中的首页优化分析。在讨论首页优化问题之前,需要先了解点击进入首页的用户是谁,他们进入首页的目的是什么,以及首页要完成的任务是什么。根据用户浏览目的,可以将点击进入首页的用户分为四类。本文以某宝贝店铺为例,分析了用户对店铺其他宝贝、相关活动和店铺信誉的需求。
2023-04-03 15:42:54 1.3MB 文档资料
1
数据分析案例--红酒数据集分析 介绍: 这篇⽂章主分析了红酒的通⽤数据集,这个数据集⼀共有1600个样本,11个红酒的理化性质,以及红酒的品质(评分从0到10)。这⾥主 要⽤python进⾏分析,主要内容分为:单变量,双变量,和多变量分析。 注意:我们在分析数据之前,⼀定要先了解数据。 1.导⼊python中相关的库 import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns # 颜⾊ color = sns.color_palette() # 数据print精度 pd.set_option('precision',3) 2.读取数据 注意:读取数据之前应该先看⼀下数据⽂件的格式,再进⾏读取 我们看到这个数据使⽤';'进⾏分隔的,所以我们⽤';'进⾏分隔读取 pandas.read_csv(filepath, sep=', ' ,header='infer', names=None) filepath:⽂本⽂件路径;sep:分隔符;header默认使⽤第⼀⾏作为列名,如果header=None则pandas为其分配默认的列名;也可使⽤ names传⼊列表指定列名 data=pd.read_csv(r'H:\阿⾥云\红酒数据集分析\winequality-red.csv',sep=';') data.head() 先读取数据的前五⾏ 然后我们也可以把这个整理好的数据,再另存为csv⽂件或者excel⽂件 data.to_csv(r'H:\阿⾥云\红酒数据集分析\winequality-red2.csv') data.to_excel(r'H:\阿⾥云\红酒数据集分析\winequality-red3.xlsx') winequality-red2.csv如图: winequality-red3.xlsx如图: 这样呢,我们就保存好了⽂件。这也是整理⽂件的⼀种⽅式 3.查看数据集的数据类型和空值情况等 可以看出没有缺失值,数据整齐 4.单变量分析 #简单的数据统计 data.describe() 5.绘图 # 获取所有的⾃带样式 plt.style.available # 使⽤⾃带的样式进⾏美化 plt.style.use('ggplot') #获取所有列索引,并且转化成列表格式 colnm = data.columns.tolist() fig = plt.figure(figsize = (10, 6)) for i in range(12): #绘制成2⾏6列的图 plt.subplot(2,6,i+1) #绘制箱型图 #Y轴标题 sns.boxplot(data[colnm[i]], orient="v", width = 0.5, color = color[0]) plt.ylabel(colnm[i],fontsize = 12) #plt.subplots_adjust(left=0.2, wspace=0.8, top=0.9) plt.tight_layout() print('\nFigure 1: Univariate Boxplots') colnm = data.columns.tolist() plt.figure(figsize = (10, 8)) for i in range(12): plt.subplot(4,3,i+1) #data.hist绘制直⽅图 data[colnm[i]].hist(bins = 100, color = color[0]) plt.xlabel(colnm[i],fontsize = 12) plt.ylabel('Frequency') plt.tight_layout() print('\nFigure 2: Univariate Histograms') 品质 这个数据集的⽬的是研究红酒品质和理化性质之间的关系,品质的评价范围是0-10,这个数据集中的范围是3到8,有82%的红酒品质是5 或6 酸度相关的特征 这个数据集有7个酸度相关的特征:fixed acidity, volatile acidity, citric acid, free sulfur dioxide, total sulfur dioxide, sulphates, pH。前6个特征都与红酒的pH的相关。pH是在对数的尺度,下⾯对前6个特征取对数然后作histogram。另外,pH值主要是与fixed acidity有关fixed acidity⽐volatile acidity和citric acid⾼1到2个数量级(Fi
2023-01-12 16:16:52 789KB 文档资料
1
博客<基于K-Means聚类算法对NBA球员数据的聚类分析>所用数据
2022-12-08 22:30:12 19KB 数据 聚类分析 案例
1
Python数据分析入门——运动员信息分析案例数据文件1
2022-11-23 20:14:37 19KB python 数据分析 文档资料 开发语言
1
Python数据分析入门——运动员信息分析案例数据2
2022-08-14 20:00:24 31KB python 数据分析 文档资料 开发语言
1