在本挑战中,我们主要关注的是“学生成绩影响因素分析”。这是一项常见的数据分析任务,旨在探索哪些变量可能对学生的考试成绩产生显著影响。我们有两个关键文件:`Students_Exam_Scores.csv` 和 `学生成绩影响因素分析.ipynb`。前者是一个CSV文件,通常包含学生的基本信息和他们的考试分数;后者是一个Jupyter Notebook文件,里面可能包含了数据清洗、探索性数据分析(EDA)、特征工程以及建模的过程。 `Students_Exam_Scores.csv` 数据集可能会包含以下列: 1. **学生ID** - 用于唯一标识每个学生的标识符。 2. **年龄** - 学生的年龄,可能会影响学习能力和注意力集中。 3. **性别** - 男性或女性,性别差异可能在某些学科上存在。 4. **年级** - 学生所在的学习阶段,初级、中级或高级。 5. **家庭背景** - 家庭经济状况和社会环境,可能影响教育资源的获取。 6. **出勤率** - 参加课程的频率,直接影响学习效果。 7. **兴趣** - 对学科的兴趣程度,可以影响学习投入度。 8. **教师质量** - 教师的教学能力,可能对学生的学习成果有显著影响。 9. **科目** - 学生所学的学科,不同的科目可能有不同的难度和评分标准。 10. **考试分数** - 最终的成绩,是我们要预测或解释的目标变量。 在`学生成绩影响因素分析.ipynb`中,我们可能会看到以下步骤: 1. **数据加载** - 使用pandas库的`read_csv()`函数读取CSV文件。 2. **数据预处理** - 检查缺失值、异常值和不一致的数据,可能需要进行填充、删除或转换。 3. **描述性统计** - 计算变量的均值、中位数、标准差等,了解数据的基本情况。 4. **相关性分析** - 使用`corr()`函数查找变量之间的关联,寻找潜在的影响因素。 5. **可视化** - 使用matplotlib或seaborn创建散点图、箱线图等,帮助理解数据分布和关系。 6. **特征工程** - 可能会创建新的特征,如平均出勤率或性别编码(例如,男性=0,女性=1)。 7. **模型选择** - 可能会尝试多种模型,如线性回归、决策树、随机森林或梯度提升机。 8. **训练与验证** - 划分训练集和测试集,使用训练集训练模型,测试集评估模型性能。 9. **模型调优** - 使用网格搜索或随机搜索调整模型参数,提高预测准确性。 10. **结果解释** - 分析特征重要性,解释模型如何根据输入变量预测学生成绩。 11. **模型评估** - 使用R²分数、均方误差(MSE)或根均方误差(RMSE)等指标评估模型性能。 通过这个挑战,参与者不仅能学习到如何进行实际的数据分析流程,还能了解如何在实际问题中应用统计和机器学习方法,从而发现影响学生成绩的关键因素,并为教育政策或教学实践提供有价值的见解。
2025-09-22 15:10:37 602KB 数据分析 数据集
1
资源下载链接为: https://pan.quark.cn/s/6b3e936ec683 文本情感分析是自然语言处理(NLP)领域的一项重要任务,旨在识别和提取文本中的主观信息,尤其是情绪色彩。在“Python机器学习——英文文本情感分析”项目中,提供了一套完整的Python代码,用于分析英文文本的情感倾向。情感分析通常分为三类:极性分析(判断文本是积极、消极还是中立)、情绪识别(如喜怒哀乐)和主题检测。该项目的重点可能是极性分析。 在Python中进行情感分析时,常用的库有NLTK、TextBlob、VADER和Spacy等。这些库提供了预处理工具、情感词典和模型,能够帮助快速实现情感分析功能。例如,TextBlob利用Pattern库的情感分析API,通过单词的极性得分来计算文本的情感极性;VADER则适合社交媒体文本分析,因为它考虑了缩写、感叹号和否定词等在情感表达中的特殊作用。 在代码实现过程中,通常包含以下步骤:首先是数据预处理,包括去除停用词(如“the”“is”等常见无意义词)、标点符号、数字,进行词干提取和词形还原,以及将文本转化为小写等。其次是特征工程,可能采用词袋模型(BoW)、TF-IDF或词嵌入(如Word2Vec、GloVe)来表示文本。接着是模型训练,可选择传统的机器学习算法,如朴素贝叶斯、支持向量机(SVM)、决策树等,或者深度学习模型,如LSTM或BERT。然后是模型评估,通过准确率、精确率、召回率、F1分数等指标来评估模型性能。最后是预测与应用,训练好的模型可用于预测新未标注文本的情感。 该项目的代码可能涵盖了以上所有步骤,通过加载数据集、预处理文本、构建特征、选择合适的机器学习模型并进行训练,最终实现对新文本的情感预测。对于初学者来说,这是一个很好的实践案例,有助于理解情感分析的工作原理和流程。需要注意的是,在实际使用中,应根据具体需求调
2025-07-08 10:15:40 272B Python 文本情感分析
1
基于Matlab的通信信号调制识别数据集生成与性能分析代码,自动生成数据集、打标签、绘制训练策略与样本数量对比曲线,支持多种信号参数自定义与瑞利衰落信道模拟。,通信信号调制识别所用数据集生成代码 Matlab自动生成数据集,打标签,绘制不同训练策略和不同训练样本数量的对比曲线图,可以绘制模型在测试集上的虚警率,精确率和平均误差。 可以绘制不同信噪比下测试集各个参数的直方图。 注释非常全 可自动生成任意图片数量的yolo数据集(包含标签坐标信息) 每张图的信号个数 每张图的信号种类 信号的频率 信号的时间长度 信号的信噪比 是否经过瑞利衰落信道 以上的参数都可以根据自己的需求在代码中自行更改。 现代码中已有AM FM 2PSK 2FSK DSB,5种信号。 每张图的信号个数,种类,信噪比,时间长度均是设定范围内随机 可以画出不同训练策略,不同训练样本数量的对比曲线图 可以计算验证集的精确率,虚警率,评论参数误差并且画出曲线图 可以画出各个参数在不同信噪比之下的直方图 ,核心关键词: 1. 通信信号调制识别 2. 数据集生成代码 3. Matlab自动生成 4. 打标签 5. 对比曲线图
2025-07-03 09:48:20 2.53MB 柔性数组
1
SEACAS [] [ ] 注意:旧的基于imake的版本已被删除。 获取资源 git clone https://github.com/gsjaardema/seacas.git 这将创建一个目录,在以下说明中将其称为seacas 。 您可以将此目录重命名为所需的任何其他名称。 通过执行以下操作来设置指向此位置的环境变量: cd seacas && export ACCESS=`pwd` 制作说明 自动下载和构建依赖关系(第三方库) 构建SEACAS需要(或可选)一些外部开发的第三方库(TPL):HDF5,NetCDF,CGNS,MatIO,Kokkos和(如果设置了MPI)PnetCDF库。 您可以使用install-tpl.sh脚本来构建库,也可以按照详细说明手动安装它们。 要使用该脚本,只需键入./install-tpl.sh 可以通过一些环境变量来修改默认行为: 多变
2025-06-26 14:55:32 18.65MB
1
机器学习模型案例与SHAP解释性分析:涵盖类别与数值预测,CatBoost、XGBoost等六大模型深度解析及SHAP分析比较,shap分析代码案例,多个机器学习模型+shap解释性分析的案例,做好的多个模型和完整的shap分析拿去直接运行,含模型之间的比较评估。 类别预测和数值预测的案例代码都有,类别预测用到的6个模型是(catboost、xgboost、knn、logistic、bayes,svc),数值预测用到的6个模型是(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn),机器学习模型; SHAP解释性分析; 多个模型比较评估; 类别预测模型(catboost、xgboost、knn、logistic、bayes、svc); 数值预测模型(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn); 完整shap分析代码案例; 模型之间比较评估。,"多模型SHAP解释性分析案例集:类别预测与数值预测的全面比较评估"
2025-06-02 20:17:41 47KB
1
泊车路径跟踪研究:垂直泊车纯跟踪算法与MPC-Carsim联合仿真方案(附文档分析、代码及环境设置),泊车路径跟踪研究:垂直泊车算法与MPC+Carsim联合仿真实战解析(matlab+Simulink),单步泊车技术深入探索,泊车路径跟踪 垂直泊车 纯跟踪算法 MPC pursuit carsim 联合仿真 单步垂直泊车离散点信息 利用纯跟踪算法进行泊车路径的跟踪 包含matlab单独的跟踪仿真 和 simulink-carsim联合仿真(可根据自身需求更路径信息) 所有资料均包括: 1、相关问题的文档分析 2、matlab 代码及相关注释 3、simulink为2020B以上、carsim为2019 4、carsim包含泊车环境设置 ,泊车路径跟踪; 垂直泊车; 纯跟踪算法; MPC; pursuit carsim 联合仿真; 单步垂直泊车离散点信息; MATLAB 仿真; Simulink-Carsim 环境设置。,基于MPC的垂直泊车路径跟踪与联合仿真研究
2025-05-14 15:53:59 3.3MB xbox
1
基于KKT条件的双层电力市场竞标模型:从MPEC到MILP的优化简化过程与代码实现,基于KKT条件的双层电力市场竞标模型:简化为MILP模型的MPEC双层优化策略分析代码解析与初探,GAMS代码:基于KKT条件的双层电力市场竞标模型 关键词:双层优化模型,采用KKT条件和强对偶将MPEC模型简化为MILP模型 代码的部分截图及参考文献见下图 此代码有完整的模型和适用于进行电力市场研究的初学者 ,双层优化模型;KKT条件;强对偶;MPEC模型;MILP模型;电力市场竞标模型;初学者,基于KKT条件的双层电力市场竞标模型:MPEC到MILP的简化研究
2025-04-20 22:50:07 3.23MB
1
机器学习模型案例与SHAP解释性分析:涵盖类别与数值预测,CatBoost、XGBoost等六大模型深度解析及SHAP分析比较,shap分析代码案例,多个机器学习模型+shap解释性分析的案例,做好的多个模型和完整的shap分析拿去直接运行,含模型之间的比较评估。 类别预测和数值预测的案例代码都有,类别预测用到的6个模型是(catboost、xgboost、knn、logistic、bayes,svc),数值预测用到的6个模型是(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn),机器学习模型; SHAP解释性分析; 多个模型比较评估; 类别预测模型(catboost、xgboost、knn、logistic、bayes、svc); 数值预测模型(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn); 完整shap分析代码案例; 模型之间比较评估。,"多模型SHAP解释性分析案例集:类别预测与数值预测的全面比较评估"
2025-03-27 23:28:10 47KB ajax
1
北京市朝阳医院药品销售数据分析代码
2024-11-25 05:53:19 304KB 数据分析
1
sas判别分析代码,数理统计大作业用
2024-06-24 16:52:27 4KB
1