根据哥伦比亚、秘鲁和墨西哥个体的饮食习惯和身体状况估计肥胖水平数据集,依据频繁食用高热量食物(FAVC)、食用蔬菜频率(FCVC)、主餐数量(NCP)、两餐之间的食物消耗量(CAEC)、每日饮水量 (CH20)等数据特征,预测人群的肥胖水平(Obesity Prediction),肥胖水平分为7类,分别为体重不足、正常体重、超重I级、超重II级、肥胖I型、肥胖II型和III型肥胖。 利用决策树进行分析预测,内附数据集、源代码、实验分析报告以及可视化结果
2025-05-12 07:44:17 2.54MB 机器学习
1
论文研究-基于C4.5决策树方法的到港航班延误预测问题研究.pdf,  航班延误一直是机场运营管理的一大难题,建立有效的模型实现较准确的延误预测来协助机场方面采取应对措施,于机场于社会都有重要意义. 本研究提出一个面向机场的到港航班延误预测问题,对比现有的贝叶斯网络及朴素贝叶斯方法,结合航班数据的特点构建了基于C4.5决策树的航班延误预测模型. 针对国内某大型机场的真实数据集,本研究 设计了大量实验,实验结果表明所提模型正确率接近80%,较两种贝叶斯方法有进一步提升. 此外研究还设计实验分析了影响模型效果的因素.
2025-05-11 10:26:28 1.68MB 论文研究
1
用Python代码实现了一个GBDT类,训练和预测数据,给出了运行示例。代码解释说明的博客地址:https://blog.csdn.net/u013172930/article/details/143473024 梯度提升决策树(Gradient Boosting Decision Tree,简称GBDT)是一种基于集成学习的机器学习算法,它通过迭代地添加新的树来改进整体模型。GBDT的核心思想是通过不断学习前一个树的残差来构建新的树,以此来修正前一个树的预测误差。在每次迭代中,GBDT都会生成一棵新的决策树,然后将新的决策树与现有的模型集成在一起,以优化目标函数。这种算法特别适合处理回归问题,同时在分类问题上也有不错的表现。 Python作为一门高级编程语言,因其简洁性和强大的库支持,在数据科学领域得到了广泛的应用。在Python中实现GBDT算法,通常需要借助一些专门的机器学习库,例如scikit-learn。然而,在给定的文件中,我们有一个从头开始编写的GBDT类实现,这意味着它可能不依赖于任何外部的库,而是直接用Python的原生功能来完成算法的实现。 文件列表中的"gbdt.ipynb"可能是一个Jupyter Notebook文件,这是一个交互式编程环境,非常适合进行数据科学实验。该文件很可能是对GBDT算法实现的解释和使用说明,其中可能包含了详细的代码注释和运行示例。"cart.py"文件名暗示了它可能是实现分类与回归树(CART)算法的Python脚本。CART是一种决策树算法,可以用于生成GBDT中的单棵树。"utils.py"文件通常包含一些辅助功能或通用工具函数,这些可能是为了支持GBDT类的运行或者在实现过程中使用的通用功能。 这个压缩包文件包含了用Python从零开始实现GBDT算法的完整过程。它不仅提供了GBDT算法的代码实现,还可能包括了如何使用该算法进行训练和预测的示例,以及相关的辅助代码和工具函数。通过这样的实现,用户可以更深入地理解GBDT的工作原理,而不仅仅是作为一个“黑盒”使用现成的机器学习库。
2025-05-08 17:43:11 5KB python boosting GBDT 梯度提升决策树
1
基坑事故的发生与基坑施工方案设计不完善有着密切联系。目前基于二维平面的设计方案往往难以清楚表达基坑施工过程的空间与时间关系。而采用虚拟现实的三维模拟仿真技术,可以构建立体的施工方案表述;并且结合基坑支护结构仿真结果,验证施工方案的有效性;同时通过三维仿真模型可对基坑结构变形进行预警,以防止基坑工程事故的发生。基于VRML与Web Services技术,研究并实现了一个基坑支护工程的三维模拟仿真系统。给出了系统架构,并对服务器端和客户端的开发与实现方法作了详细说明,最后给出了三维模拟仿真系统的应用实例。
2025-04-28 21:05:41 535KB 论文研究
1
决策树分析是数据挖掘和机器学习领域中常用的一种方法,尤其在分类问题上表现出色。在本案例中,“决策树分析NBA”可能是利用决策树技术来解析NBA(美国职业篮球联赛)的相关数据,例如球员表现、比赛结果、球队策略等,以洞察比赛胜负的关键因素、预测比赛结果或者评估球员价值。 我们需要了解决策树的基本概念。决策树是一种直观的图形模型,它通过一系列基于特征的判断来划分数据集,最终形成一个类似于树状结构的模型。在这个模型中,每个内部节点代表一个特征或属性测试,每个分支代表一个测试输出,而每个叶节点则代表一个类别或决策结果。 在NBA数据分析中,可能涉及以下关键知识点: 1. 特征选择:选取对比赛结果影响较大的特征,如球员得分、篮板、助攻、盖帽、抢断等统计指标,以及球队整体的进攻效率、防守效率等。 2. 数据预处理:对收集到的原始数据进行清洗,处理缺失值、异常值,并将非数值特征(如球员位置)转化为数值形式,以便于决策树算法处理。 3. 决策树算法:常见的决策树算法有ID3、C4.5、CART(分类与回归树)等。在NBA分析中,CART可能更为适用,因为它能处理连续和离散特征,可以用于构建分类或回归树。 4. 模型训练与剪枝:使用训练数据集构建决策树模型,通过验证集评估其性能。为了避免过拟合,通常会进行剪枝操作,如预剪枝(设置停止生长条件)和后剪枝(通过牺牲部分准确度来降低复杂度)。 5. 模型评估:使用测试数据集评估模型的预测能力,常见的评估指标有准确率、精确率、召回率、F1分数、AUC-ROC曲线等。 6. 结果解释:决策树模型的一个优势在于可解释性强,可以清晰地看到每个决策路径,理解哪些特征对结果影响最大。这对于篮球教练制定战术或管理层评估球员价值非常有价值。 7. 应用场景:NBA决策树分析可以用于预测比赛胜负、评估球员组合的影响力、优化阵容配置、指导训练策略等。 8. 集成学习:为了提高模型的稳定性和准确性,还可以考虑使用集成方法,如随机森林或梯度提升树,它们是多个决策树的集合,可以减少模型的波动并提高整体性能。 决策树分析NBA是对NBA数据进行深入挖掘的过程,通过对各种篮球比赛相关数据的建模,揭示隐藏的模式和趋势,为球队管理、战术设计提供数据支持。在这个过程中,数据预处理、特征选择、模型训练与评估都是至关重要的步骤。
2024-12-04 22:29:48 30KB
1
在IT领域,尤其是在数据分析和决策支持系统中,MATLAB是一种常用的高级编程语言和环境。"三支决策"是一种处理不确定性和模糊性的决策方法,它扩展了传统的二元(是/否)决策,提供了第三种可能的选择,即"不确知"。在"三支决策matlab实现"中,我们将探讨如何利用MATLAB来执行这种复杂的决策模型。 S型效用函数在决策理论中扮演着重要角色,它用于描述决策者对风险的态度。S型效用函数通常呈现为S曲线形状,可以反映出风险规避、风险中性或风险寻求的行为特征。在MATLAB中,我们可以构建这些函数并进行参数调整,以适应不同决策者的风险偏好。 毕达哥拉斯模糊逻辑是一种特殊的模糊逻辑系统,源自毕达哥拉斯的几何学思想,强调在模糊集合中的接近度。在处理不确定性时,毕达哥拉斯模糊逻辑通过度量元素与模糊集之间的"距离"来评估其隶属度。在MATLAB中,我们可以创建模糊逻辑系统,定义模糊规则,并应用毕达哥拉斯距离来计算子集间的相似性。 在三支决策过程中,MATLAB可以帮助我们实现以下步骤: 1. 数据预处理:对输入数据进行清洗、归一化,确保数据适合进行模糊逻辑分析。 2. 建立模糊集:定义模糊变量和相应的模糊集,包括模糊规则和隶属函数。 3. 模糊推理:利用模糊逻辑进行推理,将输入转换为模糊输出。 4. 清晰化:将模糊输出转换为清晰的决策结果,这通常涉及到模糊集的隶属度函数和S型效用函数。 5. 三支决策:在"是"、"否"和"不确知"之间做出选择,根据模糊推理的结果和效用函数的评估。 在提交的文件"submission_6009537"中,可能包含了MATLAB代码、数据文件以及关于如何运行和解释结果的指南。用户可以通过阅读和理解这些文件,学习如何将S型效用函数和毕达哥拉斯模糊逻辑应用于实际的三支决策问题。通过这样的实践,不仅可以提升MATLAB编程技能,还能深入理解不确定条件下决策的数学原理和实现过程。 "三支决策matlab实现"是一个结合了模糊逻辑、效用函数和决策理论的项目,它提供了一种强大的工具来处理现实生活中的复杂决策问题,尤其是在面临不确定性和模糊信息时。通过学习和应用MATLAB代码,IT专业人员可以增强自己在数据分析和决策支持领域的专业能力。
2024-11-19 23:13:59 569KB matlab
1
针对语音情感信号的复杂性和单一分类器识别的局限性,提出一种核函数极限学习机(KELM)决策融合的方法用于语音情感识别。首先对语音信号提取不同的特征,并训练相应的基分类器,同时将输出转化为概率型输出;然后利用测试集在基分类器的输出概率值计算自适应动态权值;最后对各基分类器的输出进行线性加权融合得到最终的分类结果。利用该方法对柏林语音库中4种情感进行识别,实验结果表明,提出的融合KELM方法优于常用的单分类器以及多分类器融合方法,有效地提高了语音情感识别系统的性能。
2024-09-14 12:07:28 422KB 语音情感识别
1
MDP(马尔科夫决策过程)是一种在不确定环境中进行决策的数学模型,广泛应用于强化学习、机器人控制、经济规划等多个领域。MATLAB作为一种强大的数值计算环境,为MDP提供了便利的实现工具。MDPtoolbox是专为在MATLAB中处理马尔科夫决策过程而设计的一个工具包,其主要功能包括但不限于建立MDP模型、求解最优策略以及模拟决策过程。 MDP的基础概念包括状态空间、动作空间、转移概率和奖励函数。状态空间定义了系统可能存在的所有状态集合,动作空间则包含了在每个状态下可以采取的所有可能行动。转移概率是指从一个状态转移到另一个状态的概率,通常由动作决定。奖励函数则是对每一步操作给予的反馈,它可以是即时的,也可以是延后的,目标是最大化累积奖励。 MDPtoolbox的核心功能之一是构建MDP模型。用户可以通过定义状态、动作、转移概率矩阵以及奖励函数来创建自定义的MDP模型。工具包通常提供友好的接口,使得用户能够方便地输入这些参数,简化了建模过程。 在模型构建完成后,MDPtoolbox提供了多种求解策略的方法。常见的策略求解算法有动态规划(如贝尔曼方程)、价值迭代、策略迭代等。这些算法能够找到使长期累积奖励最大化的最优策略。对于大型MDP问题,工具包可能还包括近似动态规划或Q-learning等更高效的求解策略。 此外,MDPtoolbox还支持模拟和可视化功能。通过模拟,用户可以观察策略在实际运行中的效果,这有助于理解和验证策略的性能。而可视化工具则可以帮助用户直观地理解状态空间、动作空间以及策略的分布,这对于理解和调试MDP模型至关重要。 在实际应用中,MDPtoolbox还可以与其他MATLAB工具箱结合,例如与控制系统工具箱一起用于智能控制,或者与机器学习工具箱结合进行强化学习的研究。它为研究者和工程师提供了一个强大的平台,便于他们在不同领域中应用和开发基于MDP的决策算法。 MDPtoolbox是一个功能丰富的MATLAB工具包,它涵盖了MDP建模、策略求解和模拟的全过程,对于学习和研究马尔科夫决策过程的用户来说,无疑是一个强有力的辅助工具。通过深入理解和熟练运用这个工具包,用户可以更有效地解决实际问题,探索复杂环境下的最优决策策略。
2024-08-27 16:15:30 226KB matlab
1
基于MapReduce实现决策树算法的知识点 基于MapReduce实现决策树算法是一种使用MapReduce框架来实现决策树算法的方法。在这个方法中,主要使用Mapper和Reducer来实现决策树算法的计算。下面是基于MapReduce实现决策树算法的知识点: 1. 基于C45决策树算法的Mapper实现:在Mapper中,主要实现了对输入数据的处理和预处理工作,包括对输入数据的tokenize、attribute extraction和data filtering等。同时,Mapper还需要实现对决策树算法的初始化工作,例如对树的节点进行初始化和对属性的初始化等。 2. 基于MapReduce的决策树算法实现:在Reducer中,主要实现了决策树算法的计算工作,包括对树的构建、决策树的分裂和叶节点的计算等。Reducer需要对Mapper输出的结果进行处理和计算,以生成最终的决策树模型。 3. MapReduce框架在决策树算法中的应用:MapReduce框架可以对大规模数据进行并行处理,使得决策树算法的计算速度和效率大大提高。在基于MapReduce实现决策树算法中,MapReduce框架可以对输入数据进行分区和处理,使得决策树算法的计算可以并行进行。 4. 决策树算法在MapReduce中的优化:在基于MapReduce实现决策树算法中,需要对决策树算法进行优化,以提高计算速度和效率。例如,可以对决策树算法的计算过程进行并行化,对Mapper和Reducer的计算过程进行优化等。 5. 基于MapReduce的决策树算法的应用:基于MapReduce实现决策树算法可以应用于数据挖掘、机器学习和推荐系统等领域,例如可以用于用户行为分析、推荐系统和风险评估等。 6. 决策树算法在MapReduce中的实现细节:在基于MapReduce实现决策树算法中,需要对决策树算法的实现细节进行详细的设计和实现,例如对树的节点进行实现、对决策树的分裂和叶节点的计算等。 7. MapReduce框架在决策树算法中的限制:基于MapReduce实现决策树算法也存在一些限制,例如对输入数据的规模和复杂度的限制,对决策树算法的计算速度和效率的限制等。 8. 基于MapReduce实现决策树算法的优点:基于MapReduce实现决策树算法的优点包括高效的计算速度、可扩展性强、灵活性强等,可以满足大规模数据的处理和计算需求。 9. 基于MapReduce实现决策树算法的缺点:基于MapReduce实现决策树算法的缺点包括对输入数据的限制、对决策树算法的计算速度和效率的限制等。 10. 基于MapReduce实现决策树算法的应用前景:基于MapReduce实现决策树算法的应用前景包括数据挖掘、机器学习、推荐系统等领域,可以满足大规模数据的处理和计算需求。
2024-06-22 02:37:14 57KB MapReduce 决策树算法
1
首先,对面向高速公路自动驾驶决策的深度强化学习算法进行改进。分别 针对当前常用于自动驾驶决策的两种深度强化学习算法深度确定性策略梯度 (Deep Deterministic Policy Gradient,DDPG)和近端策略优化(Proximal Policy Optimization,PPO)进行改进,以使其更能满足高速公路自动驾驶场景 对于决策模块的要求。对于DDPG算法,本文对其进行针对性改进提出了基 于双评论家及优先回放机制的深度确定性策略梯度算法(Double Critic and Priority Experience Replay Deep Deterministic Policy Gradient,DCPER-DDPG)。 针对Q值过估计导致的驾驶策略效果下降问题,采用了双评论家网络进行优 化。针对演员网络更新时产生的时间差分误差导致算法模型不精准采用延迟更 新方法降低这一影响。针对DDPG算法中随机经验回放导致的采样样本效果 不符合预期和训练速度慢导致的算力和资源损耗,本文采用优先经验回放机制 对其进行改善。
2024-05-29 00:26:53 37.1MB 自动驾驶 强化学习 高速公路 决策规划
1