Matlab R2019a与Carsim 2019.1五次多项式换道轨迹规划与MPC跟踪控制模型解读,五次多项式道轨迹规划+MPC轨迹跟踪控制simulink模型(有说明文档) 版本:Matlab R2019a Carsim2019.1 模型采用五次多项式道轨迹,考虑道过程中的边界条件约束和侧向加速度约束,可以满足不同侧向加速度下的道轨迹规划 采用MPC模型预测控制对道轨迹进行跟随,经验证轨迹跟踪效果良好 ,核心关键词:五次多项式换道轨迹规划; MPC轨迹跟踪控制; Simulink模型; 边界条件约束; 侧向加速度约束; 轨迹跟踪效果。,"Matlab R2019a下五次多项式换道轨迹规划与MPC跟踪控制的Simulink模型研究"
2026-01-30 10:19:21 216KB 哈希算法
1
本文介绍了基于梦境优化算法(DOA)的多无人机协同路径规划方法。DOA是一种新型元启发式算法,灵感来源于人类梦境中的记忆和遗忘过程,通过分组策略和不同阶段的搜索策略(勘探、开发、更新)平衡全局与局部搜索。文章详细阐述了DOA的算法原理、流程及数学模型,包括路径最优性、安全性约束(避障)、高度限制和平滑成本计算。同时提供了MATLAB代码实现,支持自定义无人机数量和起始点,适用于空中摄影、测绘等场景。该方法通过优化路径长度、威胁规避和飞行可行性,实现了多无人机的高效协同路径规划。 在无人机技术迅速发展的今天,无人机路径规划成为了研究的重点之一。本文介绍的基于梦境优化算法(DOA)的多无人机协同路径规划方法,是一种新型的路径规划策略。DOA算法源自人类梦境的特有机制,通过模拟梦境中的记忆与遗忘过程,实现对问题空间的高效搜索。该算法的流程包括勘探、开发和更新三个阶段,能够有效地平衡全局搜索与局部搜索,以此达到优化路径的目的。 文章对DOA算法的原理和数学模型进行了深入的探讨,包括算法的路径最优性分析、安全性约束(避障)、高度限制以及路径平滑的成本计算等关键部分。通过细致的分析和模拟,文章揭示了DOA算法在处理多无人机路径规划问题上的有效性和优越性。 文中不仅提供了详尽的理论阐述,还公布了相应的MATLAB代码实现,用户可以自定义无人机的数量以及起始点。这使得DOA算法具有很强的普适性和灵活性,能够适应于各种无人机应用场合,如空中摄影、遥感测绘等。 DOA算法在无人机路径规划上的应用,极大地优化了飞行路径,确保了路径的最优性和安全性,同时满足了无人机飞行的高度限制要求。算法在优化路径长度的同时,还考虑了威胁规避和飞行的可行性,从而实现了多无人机的高效协同。这不仅提高了无人机任务执行的效率,也增强了无人机在复杂环境下的操作安全性。 此外,由于DOA算法是元启发式算法中的一种,它对于其他类似优化问题也具有很好的借鉴和推广价值。通过实际的测试和应用,DOA算法证明了其在处理高复杂度优化问题上的高效性与实用性。因此,DOA算法在无人机路径规划领域有着广阔的应用前景,将对无人机技术的发展起到重要的推动作用。 值得注意的是,文章对于DOA算法的介绍和评价都是基于已经完成的学术研究和实验验证,不包含任何可能性或概率性的语句,完全基于事实和实验数据进行描述。
2026-01-28 15:48:07 1.27MB 智能优化算法 MATLAB
1
内容概要:本文详细介绍了无人机航迹规划(UAV)和多无人机航迹规划(MUAV)的基本概念及其在Matlab中的实现方法。首先概述了无人机航迹规划的重要性和应用场景,如军事侦察、环境监测、航拍摄影和快递配送等。接着分别讲解了基于图论和基于采样的两种主要航迹规划算法,前者通过将飞行环境抽象成图模型寻找最优路径,后者则利用随机采样生成可行路径。针对多无人机系统,文中强调了协同作业的需求及其带来的额外挑战。最后给出了一个简化的Matlab代码示例,演示了如何使用基于采样的方法完成单无人机的航迹规划。 适合人群:对无人机技术和Matlab编程有一定了解的研究人员和技术爱好者。 使用场景及目标:适用于希望深入了解无人机航迹规划理论及其具体实现方式的学习者;旨在帮助读者掌握不同类型的航迹规划算法,并能够在Matlab环境下进行实验验证。 其他说明:本文不仅提供了理论知识,还附有具体的代码实例,有助于读者更好地理解和实践相关算法。
2026-01-26 21:52:04 539KB
1
自动驾驶领域的Lattice规划算法,涵盖三个主要部分:参考线的确定、Frenet标架的建立和多项式拟合算法。首先,通过高精地图提供的道路中心线数据确定参考线;其次,利用Frenet标架描述车辆与参考线的关系,涉及切线、法线和副法线向量的计算;最后,采用多项式拟合方法对参考线进行拟合,确保路径的安全性和高效性。文中还提供了Matlab和C++两种编程语言的具体代码实现指导。 适合人群:对自动驾驶技术感兴趣的初学者,尤其是希望深入了解路径规划算法的研究人员和技术爱好者。 使用场景及目标:适用于希望掌握自动驾驶路径规划基础知识的学习者,旨在帮助他们理解并实现Lattice规划的核心概念和技术细节。 其他说明:建议读者结合实际项目或实验平台进行练习,以便更好地掌握所学内容。同时,鼓励进一步查阅相关文献资料,深化对Lattice规划的理解。
2026-01-25 17:07:52 1.92MB
1
内容概要:本文深入探讨了自动驾驶Lattice规划算法的关键组成部分——轨迹采样、轨迹评估和碰撞检测。首先介绍了轨迹采样的重要性和实现方式,分别提供了Matlab和C++代码示例。接着讲解了轨迹评估的标准及其与碰撞检测的关系,同样给出了两种编程语言的具体实现。最后,文章还介绍了优化绘图、增加轨迹预测模块和支持自定义场景加载等功能,进一步增强了算法的应用性和灵活性。 适合人群:对自动驾驶技术和Lattice规划算法感兴趣的开发者和技术爱好者,尤其是有一定编程基础并希望通过实际代码加深理解的人群。 使用场景及目标:适用于研究和开发自动驾驶系统的技术人员,旨在帮助他们掌握Lattice规划算法的核心原理和实现细节,从而应用于实际项目中。通过学习本文提供的代码示例,读者可以在自己的环境中复现算法,并根据需求进行扩展和改进。 其他说明:文章不仅提供理论解释,还包括详细的代码实现步骤,特别是针对C++代码的VS2019编译教程和Qt5.15的可视化支持,使读者能够在实践中更好地理解和应用所学知识。
2026-01-25 17:07:35 807KB C++ Matlab
1
内容概要:本文深入探讨了自动驾驶Lattice规划算法的关键步骤,包括轨迹采样、轨迹评估和碰撞检测。详细介绍了Matlab和C++两种语言的具体实现方法及其优缺点。文中不仅提供了完整的代码示例,还涵盖了VS2019编译环境配置以及QT5.15用于可视化的集成方式。此外,文章新增了轨迹预测模块和从MAT文件加载场景的功能,进一步增强了系统的灵活性和实用性。 适合人群:对自动驾驶技术感兴趣的开发者,尤其是有一定编程基础并希望深入了解路径规划算法的人群。 使用场景及目标:适用于研究机构、高校实验室以及相关企业的科研和技术开发项目。主要目标是帮助读者掌握Lattice规划算法的核心原理,并能够基于现有代码进行扩展和优化。 其他说明:文章强调了理论与实践相结合的学习方法,鼓励读者动手实验,通过修改参数观察不同设置对最终规划结果的影响。同时为后续使用强化学习进行自动调参埋下了伏笔。
2026-01-25 17:06:31 710KB
1
内容概要:本文深入探讨了自动驾驶领域的Lattice规划算法,重点讲解了轨迹采样的方法、轨迹评估的标准以及碰撞检测的技术细节。文中不仅提供了详细的理论解释,还给出了Matlab和C++两种不同编程语言的具体代码实现,便于读者理解和实践。此外,文章还介绍了如何利用Qt5.15进行可视化操作,并新增了优化绘图、轨迹预测模块和支持自定义场景加载等功能,进一步增强了算法的应用性和灵活性。 适用人群:对自动驾驶技术感兴趣的科研人员、工程师以及有一定编程基础的学习者。 使用场景及目标:适用于研究和开发自动驾驶系统的人群,旨在帮助他们掌握Lattice规划算法的核心原理和技术实现,提高实际项目中的应用能力。 其他说明:文章提供的代码可以在Visual Studio 2019环境下编译运行,支持通过MAT文件加载不同的测试场景,有助于快速验证算法的有效性并进行改进。
2026-01-25 17:03:35 844KB
1
本文介绍了多目标向光生长算法(MOPGA)在多无人机协同路径规划中的应用。MOPGA是基于植物细胞响应阳光生长模式提出的元启发算法,适用于处理多目标优化问题。文章详细阐述了多目标无人机路径规划模型,包括路径成本、约束成本(威胁成本、飞行高度成本、平滑成本)的计算方法,并提供了完整的MATLAB代码实现。该算法能够有效解决多起点多终点的无人机路径规划问题,且起始点、无人机数量和障碍物均可自定义,具有较高的实用性和灵活性。 多目标向光生长算法(MOPGA)是一种新颖的元启发式算法,它的提出受到了植物细胞响应阳光生长模式的启发。MOPGA算法在多无人机协同路径规划中的应用展现了其解决复杂多目标优化问题的强大能力。在这一应用中,研究者们关注于路径规划模型的构建,该模型涉及到多个成本因素的计算,包括路径成本、威胁成本、飞行高度成本和平滑成本等。 通过构建这样一个模型,MOPGA算法能够针对具有多个起点和终点的复杂场景,规划出符合安全、高效和经济要求的路径。研究者们通过MATLAB编写的源代码实现了这一算法,并提供了一个灵活的框架,允许用户根据实际情况自定义起始点、无人机数量和障碍物等参数。 MOPGA算法之所以在多无人机路径规划领域具有实用性,是因为它不仅可以处理复杂的多目标问题,还能在存在诸多约束的环境中找到最优或近似最优的解。算法模拟了植物生长过程中细胞对阳光方向的反应,通过迭代过程,逐渐引导解的搜索方向,从而找到满足多个目标和约束条件的路径方案。 相较于传统的优化算法,MOPGA算法在计算效率和解的质量上表现出较大的优势。它的元启发特性使得算法能够跳出局部最优,寻求全局最优解。同时,MOPGA在并行计算方面也显示出良好的潜力,这意味着算法能够在多核处理器上更加快速地进行大规模问题的求解。 MOPGA算法在无人机路径规划方面的应用,展示了它在实际问题中的广泛适用性。无人机在许多领域都有着重要的应用价值,例如农业监测、灾害评估、军事侦察和物流运输等。在这些应用中,高效的路径规划不仅可以提高无人机任务的执行效率,还能提高安全性,降低运行成本。 MOPGA算法为多无人机协同路径规划提供了一个创新和有效的解决方案,具有重要的研究价值和应用前景。随着无人机技术的进一步发展,该算法的应用将更加广泛,其理论和实践意义也将更加突出。
2026-01-22 20:38:38 925KB 多目标优化 MATLAB
1
22年开始备考网工和网规,轻松过了网工后开始备考网规,11月因疫情被隔离导致没考成,拖了一年在23年一次通过。 资料更新到23年的11月1号。一些过于简单的知识点在整理时就一笔带过了,部分自己掌握不熟练的知识点可能有重复。word中的图都是用Viso自己画,与网上的图可能有些差异,但结构和原理是一样的
2026-01-22 10:18:35 434KB 网络 网络
1
计算机网络原理 计算机网络是一个将分散的、具有独立功能的计算机系统,通过通信设备与线路连接起来,由功能完善的软件实现资源共享的系统。计算机网络的几个应用方向包括集中、实时处理、共享资源、电子化办公与服务、通信、远程教育、娱乐等。 计算机网络可以从物理组成、功能组成、工作方式等方面进行分类。从物理组成上看,计算机网络包括硬件、软件、协议三大部分。从功能上看,计算机网络由资源子网和通信子网两部分组成。从工作方式上看,也可以认为计算机网络由边缘部分和核心部分组成。 计算机网络可以按分布范围分类,包括 WAN、MAN、LAN、PAN 等类型。按拓扑结构分类,包括总线型网络、星型网络、环形网络、树型网络、网格型网络等基本形式。也可以将这些基本型网络互联组织成更为复杂的网络。按交换技术分类,包括线路交换网络、报文交换网络、分组交换网络等类型。按采用协议分类,应指明协议的区分方式。按使用传输介质分类,包括有线(再按各介质细分)、无线两种类型。按用户与网络的关联程度分类,包括骨干网、接入网、驻地网等类型。 计算机网络体系结构可以从分层与协议、接口与服务两个方面进行描述。从分层的三个基本原则是:每层都可以提供一种服务、每层都可以向高一层提供服务、每层都可以使用下一层提供的服务。计算机网络提供的服务可分为三类:面向连接的服务与无连接的服务、有应答服务与无应答服务、可靠服务与不可靠服务。服务数据单元(SDU)、协议控制信息(PCI)、协议数据单元(PDU)三者的关系为:N-SDU+N-PCI=N-PDU=(N-1)SDU。 ISO/OSI 体系结构模型有 7 层,从低到高依次称为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。各层对应的数据交换单元分别为:比特流、帧、分组、TPDU、SPDU、PPDU、APDU。TCP/IP 体系结构模型从低到高各层依次为网络接口层、互联网层、传输层、应用层。网络接口层相当于 OSI 的物理层和数据链路层;互联网层相当于 OSI 的网络层;传输层相当于 OSI 的传输层;应用层相当于 OSI 的应用层;没有表示层和会话层。 数据通信基础包括数字传输与模拟传输、基带传输与频带传输等概念。数字传输是指用数字信号来传送消息的通信方式。模拟传输是指以模拟信号来传输消息的通信方式。不论是数字数据还是模拟数据,都可以采用两种传输方式之一进行传输。基带传输是指信号没有经过调制而直接送到信道中去传输的一种方式。频带传输是指信号经过调制后再送到信道中传输的一种方式,接收端要进行相应的解调才能恢复原来的信号。 数据通信系统模型包括发送端、接收端、收发两端之间的信道三个部分。同步方式包括位同步、字符同步、帧同步等。检错与纠错方法包括二维奇偶校验、循环冗余校验等检错方法。检错重发方法有:停发等候重发、返回重发和选择重发。 数据调制与编码包括数字数据的编码与调制、模拟数据的编码与调制等内容。数字数据编码为数字信号有:不归零码、曼彻斯特编码、差分曼彻斯特编码、双极性半空占码(AMI)、双极性 8 零替换码(B8ZS)、三阶高密度双极性码(HDB3)、nB/mB 码等。数字数据调制为模拟信号有:幅移键控(ASK)、频移键控(FSK)、相移键控(PSK)正交振幅调制(QAM)等。模拟数据编码为数字信号包括 PCM 等方法。模拟数据调制为模拟信号包括 AM、FM、PM 等方法。 复用技术包括时分复用(TDM)、频分复用(FDM)、波分复用(WDM)等类型。时分复用是在进行通信时,复用器和分用器总是成对地使用,把一个传输通道进行时间分割以传送若干话路的信息,把 N 个话路设备接到一条公共的通道上,按一定的次序轮流的给各个设备分配一段使用通道的时间。
2026-01-22 10:17:24 316KB 网络规划设计师 学习笔记 网络规划
1