1.本项目以相关平台音乐数据为基础,以协同过滤和内容推荐算法为依据,实现为不同用户分别推荐音乐的功能。 2.项目运行环境:包括 Python 环境、MySQL 环境和 VUE 环境。需要安装的依頼包为: Django 2.1、PyMySQL 0.9.2、jieba 0.39、xlrd 1.1.0、gensim 3.6.0 3.项目包括4个模块:数据请求及存储、数据处理、数据存储与后台、数据展示。其中数据处理部分包含计算歌曲、歌手、用户相似度和计算用户推荐集。数据存储与后台部分主要在PyCharm中创建新的Django项目及5个模板,即主页、歌单、歌手、歌曲和用户。前端实现的功能包括:用户登录和选择偏好歌曲、歌手;为你推荐(用户行为不同,推荐也不同) ;进入各页面时基于内容的推荐算法为用户推荐歌单,协同过滤算法为用户推荐歌曲、歌手;单击时获取详细信息,提供单个歌单、歌曲、歌手、用户的推荐;个性化排行榜(将相似度由大到小排序);我的足迹。 4.项目博客: https://blog.csdn.net/qq_31136513/article/details/132335950
2024-06-20 19:08:27 229.93MB mysql vue.js django 推荐算法
基于内容的新闻推荐系统 实现功能 (1)前台功能模块 前台用户可以进行分类查看各模块下的新闻概要列表并显示基于新闻评论量推荐的新闻列表,点击新闻 封面、标题等可直接进入新闻详情页进行阅读、评论,显示基于词语的新闻推荐列表,搜索框输入来搜 索感兴趣的新闻。 (2)后台功能模块后台管理主要包括系统设置、用户列表管理、系统日志以及新闻管理四个模块。系统设置里面包括进行 菜单按钮增删改查的菜单管理、增删改角色信息的角色管理和修改密码;用户信息管理里面包含了一个 详细的用户信息可以对每个人的详细资料进行了增删或者修改操作;系统日志里面包含了一个日志清 单,可以对日志进行增删操作;新闻管理模块里包括进行增删改查分类信息的分类管理、增删改查新闻 的标题、封面等信息的新闻管理以及增删改新闻的任意一条评论的评论管理。 1、技术栈 Java EE 、Mysql8.0 、 Spring SpringMVC Mybatis JavaScript、 EasyUI、 TF-IDF算法 2、推荐算法 基于内容推荐算法: TF-IDF 基本原理:根据用户的浏览行为,获得用户的兴趣偏好度,为用户推荐跟他
2024-06-02 13:31:31 141.36MB java 推荐算法 新闻推荐系统 推荐系统
1
一种适用于礼品推荐领域的基于内容推荐算法,曹小娜,,将个性化推荐服务应用于礼品网站是较为新颖的问题。本文立足于礼品推荐问题的特点,实现并分析了一种适用于该领域的基于内容的推
2022-05-10 13:16:57 277KB 基于内容
1
用户网络行为画像大数据中的用户网络行为画像分析与内容推荐应用
2022-05-04 20:03:12 9.3MB dashuj
1
讲解Hadoop在大数据处理,以及推荐引擎方面的解决方案
2021-12-03 22:53:52 3.23MB Hadoop
1
据调查,当今社会中,有不少人存在“选择吃什么”的困难症,为解决这一问题,文章设计了一种菜谱个性化推荐系 统。该系统分为客户端和服务端,服务端进行系统的推荐计算,该推荐计算应用了基于内容的推荐算法,应用过程如下: 首先,当一个新用户在客户端注册该系统时,系统会收集用户偏好属性以及用户基本信息;其次,系统把收集到的用户基 本信息和用户偏好属性提交到服务端,服务端通过已经建立好的用户偏好属性、菜谱属性、用户信息模型进行推荐计算; 最后,服务端把计算结果反馈到客户端,客户端显示给用户的推荐列表。实验结果表明,该推荐系统可以较为准确地给用 户推荐菜谱。
1
大数据时代下,要实现千人千面,必须要上推荐技术。用户画像是推荐系统的基础,让你更清楚了解用户的画像
2021-09-25 22:57:17 59.72MB 用户画像 大数据 机器学习
1
行业-电子政务-可携式电子装置、内容推荐方法及计算机可读媒体.zip
新闻和网页内容推荐及点击竞赛,包括2016年6月14值值2016年6月28日期间,新闻内及内容推荐网站 outbrain 上的内容推荐及浏览点击数据。
2021-07-25 17:13:41 1.27GB 数据集
1
推荐系统是利用 电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。