PFC 5.0 流体与固体相互作用——流固耦合模型实战指南(实用干货版),PFC5.0流固耦合模型应用手册:干货满载的水力压裂与达西渗流常用案例集锦,该模型是“PFC2D流固耦合常用案例合集”: 其中包括水力压裂、达西渗流等多个案例。 有需要学习和交流的伙伴可按需选取。 干满满,是运用pfc5.0做流固耦合必不可少的科研学习资料性价比绝对超高 内容可编辑,觉得运行通畅 代码真实有效。 ,关键词:PFC2D流固耦合;水力压裂;达西渗流;学习交流;干货;pfc5.0;科研学习;代码真实有效。,PFC流固耦合案例合集:含干货、实用价值高
2025-06-18 09:59:10 5.86MB scss
1
基于刚性等级的双闭环PMSM环路控制模型,其中速度环PI采用串行型PID(理想PID),电流环采用并行PID 文档说明地址:串型PID与并行PID https://blog.csdn.net/qq_28149763/article/details/145797605
2025-05-19 09:51:26 88KB PMSM
1
五一杯数学竞赛本人原创作品,最终成绩一等奖,其中算法可作为学习资料
2025-05-12 16:43:41 2.8MB 建模比赛
1
Qt皮肤生成器及uidemo源码(共26套) 1. 自带17套精美皮肤样式,其中包括黑色、灰色、扁平等。 2. 皮肤生成器只需要简单几步就可以生成一套自定义的皮肤。 3. 自带了26种uidemo,非常漂亮美观,涵盖了主界面布局、菜单切等各种效果,总有一款适合你。 4. 所有代码和demo注释都非常详细整齐整洁,非常适合初学者学习。 5. uidemo由简入难,可以一步步学习下去,从入门到熟悉。 6. uidemo从常规的客户端到app端到触摸端等都有,既有鼠标操作的也有触摸操作的。 7. 皮肤中的qss样式表内容,覆盖了几乎所有的控件,非常适合学习每个控件的qss样式如何设置,而且分门别类非常清晰。 8. 自带的quiwidget类,集大成之所长,超级牛逼,内置了无边框的消息框、错误框、询问框、右下角信息框、输入框、日期范围选择框等,支持倒计时关闭,集成图形字体设置方法及根据指定文字获取图片,集成CRC校验、获取应用程序文件名、文件路径、设置窗体居中显示、设置翻译文件、设置编码、设置延时、设置系统时间等各种静态方法,保你满意。 9. 支持任意Qt版本+任意编译器+任意系统,可运行在w
2025-05-10 19:22:02 541KB kind
1
数据集在IT行业中,特别是在机器学习和计算机视觉领域,扮演着至关重要的角色。这个特定的“动物数据集”包含了4000多张图片,涵盖了五种不同的动物:羊、马、狗、牛和猫。这样的数据集是训练图像识别模型的基础,用于让算法学习并理解这些动物的特征,从而实现自动分类。 我们要了解数据集的基本结构。在这个例子中,"images"可能是指所有图片都存储在一个名为"images"的文件夹或子文件夹内。通常,每个类别(如羊、马等)都会有一个单独的子文件夹,里面包含该类别的所有图片。这种组织方式便于训练时快速定位和读取特定类别的图像。 在机器学习中,这个数据集可以被用作监督学习的示例,其中每张图片都带有对应的标签(羊、马、狗、牛或猫)。这些标签是训练过程中的关键,因为它们告诉算法每张图片代表的是哪种动物。在训练阶段,模型会尝试找到区分不同类别动物的特征,比如形状、颜色、纹理等。 接下来,我们来探讨一下训练过程。在训练一个图像分类模型时,通常会使用深度学习的方法,如卷积神经网络(CNN)。CNN以其对图像处理的优秀性能而闻名,能够自动提取图像中的特征。训练过程中,模型会逐步调整其权重以最小化预测标签与真实标签之间的差异,也就是损失函数。这个过程通过反向传播和优化算法(如梯度下降或Adam)进行迭代,直到模型的性能达到预期标准。 在评估模型性能时,通常会将数据集划分为训练集、验证集和测试集。训练集用于更新模型参数,验证集用于调整超参数和防止过拟合,而测试集则用来衡量模型在未见过的数据上的表现。对于这个4000多张图片的数据集,合理的划分可能是20%作为验证集,20%作为测试集,剩下的60%用于训练。 此外,预处理步骤也是不可忽视的。这包括调整图片大小以适应模型输入,归一化像素值,以及可能的增强技术,如旋转、缩放、裁剪等,以增加模型的泛化能力。同时,数据集的平衡也很重要,如果各类别的图片数量差距过大,可能会影响模型对少数类别的识别能力。如果发现某些类别过少,可以采取过采样或生成合成图像等策略来解决。 这个动物数据集提供了训练和评估图像分类模型的素材,可以帮助我们构建一个能够识别羊、马、狗、牛和猫的AI系统。在实际应用中,这样的模型可能被用于自动识别农场动物、宠物识别、野生动物保护等领域,具有广泛的实际价值。通过学习和优化这个数据集,我们可以不断提升模型的准确性和鲁棒性,进一步推动人工智能在图像识别方面的进步。
2025-04-27 14:18:46 308.87MB 数据集
1
DZ-威拉亚数据 描述 DZ-Wilaya-Data是一组收集的数据,其中包含阿尔及利亚国家(Wilaya)和省(Baladiya)的列表。 Wialaya代码以及Baladiya代码,邮政编码和电话代码都包含在此数据集中。 数据以两种格式表示,即JSON和SQL。 笔记 意识到 该数据截止至2019年6月27日,此后从未修改或更新过。 资源 以下资源用于收集和合并数据。 官方政府网站: 非官方政府网站: 刮码 该作品属于 ,如果您正在寻找Scraping代码,请访问资源库。 解释数据 杰森数据 完整数据组合 Data.json :将下面的所有数据组合到一个大文件中,该文件包含所有数据的Data.json ,如下所示。 " 31 " : { " nameEn " : " Oran " , " nameAr " : " وهران " ,
2025-04-16 16:38:48 307KB states
1
在本本科毕业设计项目中,主要实现了两个关键的技术——图像隐写分析与隐写去除,这两部分都是信息安全领域的重要研究方向。项目利用了深度学习技术,特别是神经网络模型,为图像隐写术提供了高效的解决方案。 我们来讨论图像隐写分析。隐写术是一种在数字图像中隐藏信息的技术,通常用于保密通信或者版权保护。而隐写分析则是反向过程,即检测和提取这些隐藏的信息。在这个项目中,采用了SRNet(Super-Resolution Network)网络模型进行隐写分析。SRNet是一种基于深度学习的超分辨率重建网络,它能够通过学习图像的高阶特征来提升图像的分辨率。在这里,SRNet被改编并应用于隐写检测,其强大的特征提取能力有助于识别出图像中可能存在的隐写痕迹,从而实现有效的隐写分析。 接下来,我们关注隐写去除环节,这里使用的是DDSP(Deep Dct Sparsity Prior)网络模型。DDSP模型是针对图像隐写去除设计的,它利用离散余弦变换(DCT)的稀疏性特点,结合深度学习的方法,来恢复被隐写篡改后的原始图像。在DDSP模型中,网络会学习到图像DCT系数的稀疏分布特性,并通过反向传播优化,尽可能地还原未被隐写篡改的图像内容,达到去除隐写信息的目的。 此本科毕业设计项目的实施,不仅展示了深度学习在图像处理领域的强大能力,还体现了在信息安全领域的应用潜力。SRNet和DDSP网络模型的结合使用,提供了一套完整的从检测到去除的隐写处理流程,对于理解和研究图像隐写技术具有重要的参考价值。同时,这也是一次将理论知识转化为实际应用的良好实践,对于提高学生的动手能力和解决实际问题的能力大有裨益。 在实际操作中,项目文件“ahao3”可能是包含了该项目代码、数据集、训练脚本等相关资料的文件或文件夹,具体的内容可能包括模型的训练记录、测试结果、源代码等,这些资料对于复现和理解这个项目至关重要。通过深入研究这些文件,可以更深入地了解SRNet和DDSP模型的工作原理以及如何在图像隐写分析和去除任务中应用它们。 这个本科毕业设计项目是对深度学习应用于图像隐写分析和去除的积极探索,不仅对学术研究有所贡献,也为实际的安全防护工作提供了新的思路和技术支持。
2025-01-17 01:22:28 7.69MB
1
H3C_iNode_PC_7.3 定制版本,支持WINDOWS,LINUX,MACOS。其中MACOS我在14.7.1正常使用
2024-12-11 20:21:34 859.98MB
1
基于FPGA的车牌识别,其中包括常规FPGA图像处理算法: rgb转yuv, sobel边缘检测, 腐蚀膨胀, 特征值提取与卷积模板匹配。 有bit流可以直接烧录实验。 保证无错误,完好,2018.3vivado版本,正点达芬奇Pro100t,板卡也可以自己更改移植一下。 所以建的IP都有截图记录下来。
2024-10-09 22:12:09 1.16MB 图像处理 fpga开发
1
"GIS" 通常指的是 地理信息系统(Geographic Information System)。它是一种特定的空间信息系统,用于捕获、存储、管理、分析、查询和显示与地理空间相关的数据。GIS 是一种多学科交叉的产物,涉及地理学、地图学、遥感技术、计算机科学等多个领域。 GIS 的主要特点和功能包括: 空间数据管理:GIS 能够存储和管理地理空间数据,这些数据可以是点、线、面等矢量数据,也可以是栅格数据(如卫星图像或航空照片)。 空间分析:GIS 提供了一系列的空间分析工具,用于查询、量测、叠加分析、缓冲区分析、网络分析等。 可视化:GIS 能够将地理空间数据以地图、图表等形式展示出来,帮助用户更直观地理解和分析数据。 数据输入与输出:GIS 支持多种数据格式的输入和输出,包括数字线划图(DLG)、数字高程模型(DEM)、数字栅格图(DRG)等。 决策支持:GIS 可以为城市规划、环境监测、灾害管理、交通规划等领域提供决策支持。 随着技术的发展,GIS 已经广泛应用于各个领域,成为现代社会不可或缺的一部分。同时,GIS 也在不断地发展和完善,以适应更多领域的需求。
2024-09-25 16:03:29 25KB GIS
1