我们检查全息模型中的传输,其中带电自由度的动力学由非线性Dirac-Born-Infeld(DBI)作用描述。 包括轴离子标量场以打破平移不变性并在系统中产生动量耗散。 通过使用几何形状引入缩放指数,该几何形状在红外中是非相对论的并且违反了超缩放。 在探针DBI极限中,该理论再现了铜价奇特金属ρ〜T和cotθH〜T2的电阻率和霍尔角的反常温度依赖性。 没有由DBI交互编码的非线性动力学,这些缩放定律就不会出现。 我们进一步表明,由于其丰富性,DBI理论支持广泛的温度标度。 该模型提供了显式示例,其中通过不同的弛豫时间控制运输。 另一方面,当只有一个参数设置系统的温度标度时,霍尔角和电导率通常表现出相同的温度行为。 我们使用新的完全后反应的分析性强子黑糠溶液来说明这一点。
1