基于免疫系统中克隆选择原理,提出了一种多目标克隆选择算法MCSA。该方法只对部分当前所得到的Pareto最优解进行进化操作,所求得的Pareto最优解保留在一个不断更新的外部记忆库中,并选用一种简单的多样性保存机制来保证其具有良好的分布特征。实验结果表明,该方法能够很快地收敛到Pareto最优前沿面,同时较好地保持解的多样性和分布的均匀性。对于公认的多目标benchmark问题,MCSA在解集分布的均匀性、多样性与解的精确性及算法收敛速度等方面均优于SPEA、NSGAII等算法。
1