海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-06-07 11:36:33 2.24MB matlab
1
内容概要:本文介绍了使用COMSOL软件进行电磁场透射率仿真的方法和技术。首先概述了COMSOL作为强大仿真工具的特点及其广泛应用领域。然后详细解释了多极分解和分方向多级展开这两种关键技术的概念及其在电磁场分析中的重要性。接着通过一个具体的案例——透射率光学BIC仿真,展示了如何利用这些技术提高仿真的精度和效率。最后给出了简化的代码示例,指导读者如何配置相关参数,并附上了仿真结果的截图,便于理解最终效果。 适合人群:对电磁场仿真感兴趣的科研工作者、工程师以及高校学生。 使用场景及目标:适用于需要精确模拟电磁波传播特性的研究项目,如光学器件设计、通信系统优化等领域。目的是让使用者掌握COMSOL中多极分解和分方向多级展开的具体应用技巧,提升仿真能力。 其他说明:文中提供的代码仅为示例,在实际使用时需根据具体情况调整参数设置。同时,对于仿真结果的深入解析有助于推动相关领域的理论发展和技术进步。
2025-06-04 16:38:06 659KB
1
《光学教程习题详细解答》是基于姚启钧教授与华东师范大学光学教材编写组合作编写的《光学教程》第三版而编撰的一份学习资料。这份资料深入浅出地解析了教材中的各个习题,旨在帮助学生巩固光学基础知识,提高理解和应用能力。以下是基于这个主题的光学知识详细讲解: 一、光学基础理论 光学是一门研究光的产生、传播、相互作用以及检测的科学。在《光学教程》中,基础理论部分涵盖了光的波动性、粒子性和电磁场理论。波动光学讨论了光的干涉、衍射和偏振现象,这些是理解光学现象的关键。例如,双缝干涉实验展示了光的波动特性,衍射则揭示了光波在遇到障碍物时如何弯曲。光的偏振现象则解释了光的振动方向如何被限制。 二、几何光学 几何光学主要研究光的直线传播和反射、折射定律。费涅尔公式和斯涅尔定律是这一领域的核心,它们分别描述了光在界面的反射和折射规律。透镜和反射镜的设计原理也是几何光学的重要内容,如薄透镜公式和像的放大率计算,这些都是实际光学仪器设计的基础。 三、物理光学 物理光学更关注光的量子性质和非线性效应。光电效应、康普顿散射和波粒二象性是光的粒子性表现。激光的产生、超快光学以及非线性光学效应(如二次谐波产生、参量下转换)则属于现代物理光学的范畴,这些技术在科学研究和工业应用中具有重要意义。 四、光学实验与应用 光学实验是理解理论知识和培养实验技能的重要环节。在《光学教程习题详细解答》中,可能包含了光路的调整、光强的测量、光谱分析等实验的解析。这些实验不仅有助于理解光学原理,也锻炼了实际操作能力。同时,光学在通信、医疗、精密测量、遥感等领域有广泛应用,如光纤通信、光学显微镜、激光手术和激光雷达等。 五、光学习题详解 习题解答部分将涵盖以上所有内容的实际运用,通过解决习题,学生能深化对理论知识的理解,提高问题解决能力。解答通常会包含关键步骤、重要公式和必要的图解,帮助学生掌握解题思路和技巧。 《光学教程习题详细解答》是一部全面解析光学基本理论、实验方法和实际应用的学习资料,对于学习光学的学生来说,它是深入理解和掌握光学知识的宝贵资源。通过系统学习和实践,学生可以建立起扎实的光学基础,为未来在科研或工程领域的发展奠定坚实基础。
2025-05-28 00:05:26 1.14MB 光学教程
1
内容概要:本文介绍了如何利用Google Earth Engine平台进行土壤湿度分析。首先,定义了研究区域(AOI)为Dailekh,并设定了分析时间段为2024年全年。接着,加载Sentinel-1 SAR数据(包括VV和VH极化)计算雷达土壤湿度指数(RSMI),并加载Sentinel-2光学数据计算归一化植被指数(NDVI)和归一化水体指数(NDWI)。将这些指数组合成综合图像,用于更全面的土壤湿度评估。此外,还进行了基于区域的统计分析,并生成柱状图展示各指数的平均值。最后,将分析结果导出到Google Drive,包括GeoTIFF格式的图像和CSV格式的统计数据。 适合人群:从事农业、环境监测或地理信息系统相关领域的研究人员和技术人员。 使用场景及目标:① 对特定区域(如Dailekh)的土壤湿度进行长时间序列监测;② 利用多源遥感数据(SAR与光学数据)提高土壤湿度估算精度;③ 通过图表和统计数据直观展示和分析土壤湿度变化趋势。 阅读建议:本文详细记录了土壤湿度分析的具体步骤和方法,建议读者熟悉Google Earth Engine平台的操作,并掌握基本的遥感数据分析知识,在实践中逐步理解和应用文中提供的代码和技术。
2025-05-27 14:47:21 4KB 土壤水分 地理信息系统 GIS
1
采用离子束溅射法,分别在经过不同前期清洗方法处理过的K9及石英玻璃光学基片上,选择不同的镀膜参量,镀制了多种厚度的Au膜。对镀制的Au膜在真空紫外波段较宽波长范围内的反射率进行了连续测量。测试结果表明:辅助离子源的使用方式、Au膜厚度对反射镜的反射率有重大影响。基片材料、镀前基片表面清洗工艺等对反射率也有一定影响。采用镀前离子轰击,可显著提高Au膜反射率及膜与基底的粘合力;获得最高反射率时的最佳膜厚与基片材料、镀膜工艺密切相关。对经过离子清洗的石英基片,膜厚在30 nm左右反射率最高;比较而言,石英基片可获得更高的反射率;辅助离子源的使用还显著影响获得最高反射率时对应的最佳膜厚值,且对K9基片的影响更显著。
2025-05-23 08:19:55 1.67MB 薄膜光学
1
内容概要:本文详细记录了利用COMSOL Multiphysics进行基于开口谐振环(SRR)的二次谐波产生的完整建模过程。首先介绍了SRR的基本概念及其在超材料领域的应用价值,随后逐步讲解了几何建模、材料属性设置、物理场配置、求解器选择以及后处理方法。文中强调了多个关键点,如几何参数的精确设置、非线性材料属性的正确配置、频率设置的合理性、求解器的选择与配置、网格划分的策略等。此外,还分享了一些实用的操作技巧和常见错误避免方法,帮助用户更好地理解和应用这一复杂的非线性光学仿真。 适合人群:从事非线性光学、超材料研究的专业人士,尤其是有一定COMSOL使用基础的研究人员和技术人员。 使用场景及目标:适用于希望深入了解SRR结构在二次谐波产生中的应用机制,掌握COMSOL中非线性光学仿真的具体实施步骤,提高仿真效率并减少常见错误的发生。 其他说明:文中提供了详细的代码片段和参数设置指导,确保读者能够顺利复现实验结果。同时,作者通过自身实践经验分享了许多宝贵的调试经验和优化建议,使读者能够在实践中少走弯路。
2025-05-21 17:07:32 939KB
1
内容概要:本文详细介绍了如何使用COMSOL进行金属开口环谐振器(Metallic Split-Ring Resonator, SRR)的二次谐波(SHG)转换效率仿真。主要内容涵盖了几何建模、材料属性设置、边界条件配置、求解器设置以及后处理步骤。文中强调了多个关键点,如使用Drude模型优化金属材料参数、设置合适的非线性极化率、采用频域-时域混合求解器提高精度、确保网格划分足够精细等。此外,还提供了具体的MATLAB和Python代码片段,帮助用户避开常见陷阱并获得准确的仿真结果。 适合人群:从事非线性光学研究、电磁场仿真、超表面设计的研究人员和技术人员。 使用场景及目标:适用于需要精确计算金属开口环谐振器二次谐波转换效率的研究项目。目标是通过合理的参数设置和求解方法,得到高精度的仿真结果,为实验提供理论支持。 其他说明:文中提到的仿真过程中需要注意的具体细节和技巧对于提高仿真准确性至关重要。建议读者仔细阅读并结合实际应用进行调整。
2025-05-21 16:48:25 943KB
1
### 基于MATLAB的光学干涉仿真 #### 一、引言 光学干涉作为一种重要的物理现象,在科学研究和技术应用中有着广泛的应用。基于MATLAB的光学干涉仿真是一种有效的教学工具和研究手段,可以帮助学生和研究人员更好地理解干涉原理,并进行定量分析。 #### 二、MATLAB在光学干涉仿真中的应用 MATLAB作为一款强大的数学计算软件,不仅能够处理复杂的数学问题,还能通过其丰富的图形用户界面(GUI)功能来创建直观的交互式应用程序。在光学干涉仿真的背景下,MATLAB提供了一个理想的平台来模拟不同的干涉现象,并且可以进行精确的定量测量。 #### 三、实验原理及MATLAB仿真 ##### 3.1 牛顿环干涉 牛顿环干涉是一种常见的干涉现象,当一个平凸透镜放置在一个平坦的玻璃板上时,光线在透镜和平板之间形成多层空气膜。当光线穿过这些空气膜并反射回来时,会在透镜表面形成一系列明暗相间的圆环。这些圆环的形成遵循一定的公式: \[ I = I_0 \cos^2\left[\frac{\pi d}{\lambda}\left(\sqrt{1 + \frac{2r^2}{R}} - 1\right)\right] \] 其中,\(I\) 是干涉光强,\(I_0\) 是入射光强度,\(d\) 是平凸透镜的曲率半径,\(r\) 是干涉环的半径,\(\lambda\) 是光的波长。 ##### 3.2 迈克尔逊干涉仪 迈克尔逊干涉仪是一种非常精密的光学仪器,可以用来测量非常小的距离变化。其基本原理是将一束光分成两路,每一路经过不同的路径长度后重新汇合形成干涉条纹。迈克尔逊干涉仪的光强分布可以表示为: \[ I = I_0 \cos^2\left[\frac{\pi}{\lambda}(2d - d_0)\right] \] 这里,\(d\) 是动镜与定镜之间的距离,\(d_0\) 是初始位置时的差值,\(\lambda\) 是光的波长。 #### 四、MATLAB GUI 实现 为了实现基于MATLAB的光学干涉仿真,可以通过以下步骤构建GUI界面: 1. **GUI界面设计**:设计包含坐标轴、按钮和文本标签等元素的界面。 - **坐标轴对象**:用于绘制干涉图案。 - **按钮**:包括用于启动不同干涉实验(如牛顿环和迈克尔逊干涉)的按钮,以及用于读取数据点坐标和退出程序的按钮。 - **静态文本标签**:用于标注提示信息。 2. **编写GUI回调函数代码**:为每个GUI元素编写对应的M文件,定义它们的行为和功能。 - **绘图功能**:编写代码来模拟牛顿环和迈克尔逊干涉的现象,并在坐标轴上绘制相应的干涉图案。 - **数据读取**:实现从干涉图案中读取特定数据点坐标的功能,以便进行进一步的定量分析。 - **退出程序**:为退出按钮编写相应的回调函数,确保程序可以正常关闭。 #### 五、结论 基于MATLAB的光学干涉仿真软件不仅可以帮助学生和研究人员更好地理解和掌握光学干涉的基本原理,还能通过定量测量的方式提高实验的精确度。通过MATLAB GUI的强大功能,我们可以创建一个直观且易于操作的用户界面,极大地提高了学习和研究的效率。这种仿真软件不仅在教育领域有很高的价值,在科学研究和技术开发方面也具有广泛的应用前景。
2025-05-19 17:53:45 200KB
1
拉曼光谱分析技术可以在分子水平上研究物质分子结构和生化组成信息,具有快速、准确、无创(或低创)等优点,已成为临床早期癌症检测和组织病理生理分析的重要工具。近年来,激光技术、光纤探测器件和光电检测技术的发展,不仅极大促进了新型拉曼光谱分析仪器与技术的研发,更进一步扩展了其临床应用的广度和深度,彰显出其独特的科学内涵与应用价值。对临床拉曼光谱分析技术的理论基础进行了阐述,归纳总结了临床快速拉曼光谱分析集成系统设计思路。在此基础上,以作者相关研究工作为例,探讨了拉曼光谱分析技术在临床癌症早期检测与病理分析中的应用特点,为推动相关基础研究及技术创新提供有益参考。
2025-04-24 18:47:36 12.16MB 医用光学 拉曼光谱 临床检测
1
内容概要:本文详细介绍了如何利用COMSOL进行光子晶体超表面的透反射相位计算以及GH(古斯-汉欣)位移的模拟。首先解释了GH位移的概念及其重要性,接着逐步讲解了从建模到最终数据分析的全过程。其中包括选择合适的边界条件、正确设置网格密度、处理相位跳变等问题的具体方法。同时提供了MATLAB和Python代码用于处理相位数据并计算GH位移。文中还分享了许多实践经验,如避免常见错误、提高仿真的准确性等。 适合人群:从事光学、光子学研究的专业人士,尤其是对光子晶体超表面感兴趣的科研工作者和技术开发者。 使用场景及目标:帮助研究人员更好地理解和掌握光子晶体超表面的设计与仿真技巧,特别是在GH位移方面的应用。通过学习本文提供的方法,能够更加精确地预测和控制光束的偏折行为,从而为新型光学器件的研发提供理论依据和技术支持。 其他说明:文中不仅包含了详细的理论分析,还附带了大量的实用技巧和注意事项,有助于读者在实际工作中少走弯路,提高工作效率。此外,作者还强调了不同工具之间的协同使用,如将COMSOL与MATLAB、Python相结合,进一步提升了仿真的灵活性和便捷性。
2025-04-17 15:18:42 649KB COMSOL 光学仿真
1