内容概要:本文详细介绍了利用Lumerical进行可调谐光学手性建模的技术方法。首先解释了可调谐光学手性的概念及其重要性,随后逐步讲解了如何使用Lumerical的FDTD解决方案创建基本结构、设置光源、添加监测器以及实现动态调谐。文中通过具体案例展示了如何通过改变结构参数(如介质柱的半径、纳米棒的角度等)来调控光学手性,并强调了数据收集和分析的重要性。此外,还探讨了使用相变材料(如VO₂)实现动态手性控制的具体方法和技术细节,包括材料插值、热场耦合等。最后提到了结合参数扫描和机器学习优化调谐效果的高级玩法。 适合人群:从事光学、光子学研究的专业人士,尤其是对可调谐光学手性和Lumerical仿真感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解并掌握可调谐光学手性建模技术的研究人员,旨在帮助他们更好地理解和应用这一领域的最新进展,提高研究效率和成果质量。 其他说明:文章不仅提供了详细的理论背景介绍,还包括了大量的代码示例和实践经验分享,有助于读者快速上手并在实践中不断改进自己的模型。
2025-06-25 15:09:33 401KB
1
内容概要:本文档由Amirhossein Ahrari提供,作为Google Earth Engine教程的一部分,主要介绍植被光学深度(VOD)产品的处理方法,使用Python API(Xee)。文档首先介绍了环境配置与初始化,包括安装所需库如xee、geemap、xarray等,并进行Earth Engine认证与初始化。然后,通过定义地理区域(以水文流域为例),获取并处理了2015年至2020年间L波段VOD数据集。对数据进行了年度和月度平均值计算,并通过matplotlib库绘制了不同时间尺度下的VOD分布图,最后将年度数据保存为netCDF格式。; 适合人群:对遥感数据处理、植被监测感兴趣的科研人员或学生,特别是熟悉Python编程且对Google Earth Engine有一定了解的用户。; 使用场景及目标:①学习如何利用Google Earth Engine平台获取和处理植被光学深度数据;②掌握使用Python API进行空间数据分析的方法;③了解植被光学深度数据的时间序列变化特征及其可视化表示。; 阅读建议:由于涉及到较多的技术细节,建议读者提前准备好相关软件环境,并按照文档步骤逐步操作,同时可以参考作者提供的视频教程加深理解。
2025-06-21 14:01:41 2KB Python Earth Engine 遥感数据处理
1
提出了一种菲涅耳透镜的普适设计方法,可适用于广义朗伯分布的LED光源,能够同时实现聚光和均匀配光。该方案能够克服传统透镜均匀配光聚光效果不佳的问题,得到的菲涅耳透镜具有聚光比率高、厚度薄、数值孔径较大、光效利用率较高等优点,有助于充分改善LED光源的照明质量,尤其适用于大发光角度的LED光源。在理论设计的基础上,利用专业软件对透镜进行3D建模和仿真,结果进一步验证了该方案的有效性和可靠性。
2025-06-20 15:44:09 4.78MB 光学设计 自由曲面 LED光源
1
基于COMSOL几何光学模型的液面高度传感光学折射技术探究,COMSOL几何光学模型:光学折射-液面高度传感 ,COMSOL;几何光学模型;光学折射;液面高度传感,COMSOL几何光学模型:折射与液面高度传感技术 基于COMSOL几何光学模型的液面高度传感光学折射技术探究涉及到了多学科的知识交汇,包括了光学、流体动力学、传感器技术以及计算机模拟等。该技术的核心在于通过精确的几何光学模型来模拟和分析光线在不同液面高度下的折射行为,并据此推算出液面的确切高度。 COMSOL是一个强大的多物理场模拟软件,它可以模拟电磁场、结构力学、流体动力学、化学反应等现象。在该技术探究中,COMSOL的主要作用是构建几何光学模型,用以模拟光线在介质中的传播路径以及与液面相互作用时的折射效应。 光学折射技术利用光在不同介质中传播速度不同的原理,当光线从一种介质进入另一种介质时,会改变传播方向,这种现象称为折射。在液面高度传感中,通过测量入射光和折射光的夹角变化,可以推算出液面的高度。 液面高度传感技术的关键在于将光学折射的理论应用于实际问题中,通过精确的测量与计算,实时监测液面高度的变化。这项技术广泛应用于工业过程控制、液体储存管理、水位监测等领域。 在实际应用中,光学折射与液面高度传感技术需要考虑到多种因素,例如不同液体的折射率、温度变化对折射率的影响、以及传感器的安装位置和角度等。为了提高测量的准确度和可靠性,通常需要对这些因素进行综合考虑和优化设计。 文档中的“探索几何光学模型光学折射与液面高.doc”、“液面高度传感几何光学模型下的光学折射.doc”、“利用几何光学模型进行光学折射与液面高度.html”、“几何光学模型在光学折射与液面.html”、“几何光学模型在光学折.html”和“几何光学模型光学折射液面高度.html”等文件,可能详细描述了如何利用COMSOL建立几何光学模型,如何通过模拟分析得到液面高度与折射率变化之间的关系,以及如何设计传感器与算法来实现液面高度的准确测量。 图像文件“3.jpg”、“4.jpg”、“2.jpg”和“1.jpg”可能是演示模拟结果的图解或者实验装置的照片,它们为理解光学折射与液面高度传感技术提供了直观的视觉材料。 这项技术的探究不仅为液面高度的精确测量提供了一种新的可能性,也为跨学科技术融合提供了实例,展示了理论模型与实际应用结合的科学研究方法。
2025-06-20 13:50:23 832KB
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-06-17 14:06:05 5.37MB MATLAB
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-06-07 11:36:33 2.24MB matlab
1
内容概要:本文介绍了使用COMSOL软件进行电磁场透射率仿真的方法和技术。首先概述了COMSOL作为强大仿真工具的特点及其广泛应用领域。然后详细解释了多极分解和分方向多级展开这两种关键技术的概念及其在电磁场分析中的重要性。接着通过一个具体的案例——透射率光学BIC仿真,展示了如何利用这些技术提高仿真的精度和效率。最后给出了简化的代码示例,指导读者如何配置相关参数,并附上了仿真结果的截图,便于理解最终效果。 适合人群:对电磁场仿真感兴趣的科研工作者、工程师以及高校学生。 使用场景及目标:适用于需要精确模拟电磁波传播特性的研究项目,如光学器件设计、通信系统优化等领域。目的是让使用者掌握COMSOL中多极分解和分方向多级展开的具体应用技巧,提升仿真能力。 其他说明:文中提供的代码仅为示例,在实际使用时需根据具体情况调整参数设置。同时,对于仿真结果的深入解析有助于推动相关领域的理论发展和技术进步。
2025-06-04 16:38:06 659KB
1
光学教程习题详细解答》是基于姚启钧教授与华东师范大学光学教材编写组合作编写的《光学教程》第三版而编撰的一份学习资料。这份资料深入浅出地解析了教材中的各个习题,旨在帮助学生巩固光学基础知识,提高理解和应用能力。以下是基于这个主题的光学知识详细讲解: 一、光学基础理论 光学是一门研究光的产生、传播、相互作用以及检测的科学。在《光学教程》中,基础理论部分涵盖了光的波动性、粒子性和电磁场理论。波动光学讨论了光的干涉、衍射和偏振现象,这些是理解光学现象的关键。例如,双缝干涉实验展示了光的波动特性,衍射则揭示了光波在遇到障碍物时如何弯曲。光的偏振现象则解释了光的振动方向如何被限制。 二、几何光学 几何光学主要研究光的直线传播和反射、折射定律。费涅尔公式和斯涅尔定律是这一领域的核心,它们分别描述了光在界面的反射和折射规律。透镜和反射镜的设计原理也是几何光学的重要内容,如薄透镜公式和像的放大率计算,这些都是实际光学仪器设计的基础。 三、物理光学 物理光学更关注光的量子性质和非线性效应。光电效应、康普顿散射和波粒二象性是光的粒子性表现。激光的产生、超快光学以及非线性光学效应(如二次谐波产生、参量下转换)则属于现代物理光学的范畴,这些技术在科学研究和工业应用中具有重要意义。 四、光学实验与应用 光学实验是理解理论知识和培养实验技能的重要环节。在《光学教程习题详细解答》中,可能包含了光路的调整、光强的测量、光谱分析等实验的解析。这些实验不仅有助于理解光学原理,也锻炼了实际操作能力。同时,光学在通信、医疗、精密测量、遥感等领域有广泛应用,如光纤通信、光学显微镜、激光手术和激光雷达等。 五、光学习题详解 习题解答部分将涵盖以上所有内容的实际运用,通过解决习题,学生能深化对理论知识的理解,提高问题解决能力。解答通常会包含关键步骤、重要公式和必要的图解,帮助学生掌握解题思路和技巧。 《光学教程习题详细解答》是一部全面解析光学基本理论、实验方法和实际应用的学习资料,对于学习光学的学生来说,它是深入理解和掌握光学知识的宝贵资源。通过系统学习和实践,学生可以建立起扎实的光学基础,为未来在科研或工程领域的发展奠定坚实基础。
2025-05-28 00:05:26 1.14MB 光学教程
1
内容概要:本文介绍了如何利用Google Earth Engine平台进行土壤湿度分析。首先,定义了研究区域(AOI)为Dailekh,并设定了分析时间段为2024年全年。接着,加载Sentinel-1 SAR数据(包括VV和VH极化)计算雷达土壤湿度指数(RSMI),并加载Sentinel-2光学数据计算归一化植被指数(NDVI)和归一化水体指数(NDWI)。将这些指数组合成综合图像,用于更全面的土壤湿度评估。此外,还进行了基于区域的统计分析,并生成柱状图展示各指数的平均值。最后,将分析结果导出到Google Drive,包括GeoTIFF格式的图像和CSV格式的统计数据。 适合人群:从事农业、环境监测或地理信息系统相关领域的研究人员和技术人员。 使用场景及目标:① 对特定区域(如Dailekh)的土壤湿度进行长时间序列监测;② 利用多源遥感数据(SAR与光学数据)提高土壤湿度估算精度;③ 通过图表和统计数据直观展示和分析土壤湿度变化趋势。 阅读建议:本文详细记录了土壤湿度分析的具体步骤和方法,建议读者熟悉Google Earth Engine平台的操作,并掌握基本的遥感数据分析知识,在实践中逐步理解和应用文中提供的代码和技术。
2025-05-27 14:47:21 4KB 土壤水分 地理信息系统 GIS
1
采用离子束溅射法,分别在经过不同前期清洗方法处理过的K9及石英玻璃光学基片上,选择不同的镀膜参量,镀制了多种厚度的Au膜。对镀制的Au膜在真空紫外波段较宽波长范围内的反射率进行了连续测量。测试结果表明:辅助离子源的使用方式、Au膜厚度对反射镜的反射率有重大影响。基片材料、镀前基片表面清洗工艺等对反射率也有一定影响。采用镀前离子轰击,可显著提高Au膜反射率及膜与基底的粘合力;获得最高反射率时的最佳膜厚与基片材料、镀膜工艺密切相关。对经过离子清洗的石英基片,膜厚在30 nm左右反射率最高;比较而言,石英基片可获得更高的反射率;辅助离子源的使用还显著影响获得最高反射率时对应的最佳膜厚值,且对K9基片的影响更显著。
2025-05-23 08:19:55 1.67MB 薄膜光学
1