内容概要:本文详细介绍了Lumerical FDTD Mode建模、Device Heat仿真、Ledit与GDS版图代画、Matlab应用、Euler弯曲和椭圆弯曲结构、数字超材料及其优化算法在光子学和微电子学领域的应用。首先,Lumerical FDTD Mode作为一种电磁波模拟技术,能够模拟光子在微纳结构中的传播行为,为设计新型光子器件提供理论支持。其次,Device Heat仿真是解决电子设备散热问题的重要手段,有助于优化散热设计。接着,Ledit作为一款EDA工具,可用于绘制和编辑集成电路版图,并能生成符合要求的GDS版图。Matlab则在数据分析和处理方面发挥了关键作用。此外,文中还探讨了Euler弯曲、椭圆弯曲等弯曲结构对光子传输的影响,以及数字超材料的优化设计方法。最后,文章讲述了特殊图案的GDS模型导出流程,确保其精度和可靠性。 适合人群:从事光子学、微电子学及相关领域的研究人员和技术人员,尤其是对建模、仿真和优化感兴趣的从业者。 使用场景及目标:适用于希望深入了解Lumerical FDTD Mode建模、Device Heat仿真、Ledit与GDS版图代画、Matlab应用、弯曲结构设计及数字超材料优化的研究人员和技术人员。目标是掌握这些关键技术,提高设计和优化能力,推动相关领域的创新发展。 其他说明:本文不仅提供了详细的理论介绍,还结合实际案例进行了深入浅出的讲解,使读者能够在实践中更好地理解和应用所学知识。
2025-09-07 22:03:56 654KB Lumerical FDTD Mode
1
内容概要:本文详细介绍了利用COMSOL软件进行超材料吸收器时域耦合模理论仿真的方法,重点在于如何通过仿真提取辐射损耗和欧姆损耗。文中首先概述了超材料吸收器的基本概念及其在光子学中的应用前景,接着阐述了时域耦合模理论的基础知识,包括不同模式间的耦合机制。随后,文章展示了具体的仿真建模流程,涵盖材料属性设定、边界条件配置、光源定义等方面。最后,通过对仿真结果的细致分析,成功提取出了辐射损耗和欧姆损耗,并讨论了这些数据对优化超材料吸收器设计的意义。 适合人群:从事光子学、超材料研究的专业人士,尤其是那些希望深入了解超材料吸收器工作原理及损耗机理的研究人员和技术开发者。 使用场景及目标:①帮助研究人员更好地理解和掌握超材料吸收器的工作原理;②为实际工程应用(如太阳能电池、隐身技术)提供理论支持和技术指导;③促进新型高效、低损耗超材料吸收器的设计与开发。 其他说明:文章不仅提供了详细的理论解析,还附带了MATLAB代码片段,便于读者复现实验过程并进一步开展相关研究。
2025-08-26 12:21:56 504KB COMSOL
1
光子学光子学与半导体技术相结合的前沿科技领域,它的核心是在硅材料上实现光信号的产生、传输、处理和检测等一系列功能。硅光子学的出现是为了解决传统电子集成电路在高速数据传输、长距离通信、以及大规模并行数据处理方面所面临的瓶颈问题。 标题“Silicon Photonics 短教程”表明了这是一份关于硅光子学基础知识和应用的介绍性材料。本教程由CREOL(光子学与光学学院)的助理教授Sasan Fathpour博士编写,并且将在CREOL的工业联盟研讨会上进行讲授。CREOL是位于佛罗里达大学中心的一个研究中心,专注于光子学和光学领域的研究与教育。 课程分为几个部分:首先是硅光子学的介绍和被动硅光子器件,涉及硅光子学的应用历史和技术基础,如硅绝缘体波导、多模干涉器(MMI)、阵列波导光栅(AWG)等。第二部分关注的是主动硅光子器件,包括硅中的光调制、检测和发射技术。第三部分将讨论硅光子学当前的趋势和挑战,例如光子学是否会与VLSI CMOS技术真正融合,以及硅光子学的竞争对手技术。第四部分涉及非线性硅光子学器件及其物理学原理。 Sasan Fathpour博士的个人背景丰富,他在2005年于密歇根大学安阿伯分校获得博士学位,研究方向是基于III-V量子点的激光器和自旋电子光源。在UCLA担任博士后研究员后,2007年担任访问助理教授,2008年成为Ostendo Technologies的高级研究员,并于同年成为CREOL的助理教授。 Fathpour博士的研究工作涵盖了硅光子学的多个方面,其中一些重要的工作包括与Bahram Jalali合作在IEEE《光波技术杂志》上发表的研究文章,以及与Jalali编辑的《硅光子学:电信和生物医学应用》一书。 在硅光子学的简介中,提到了硅光子学在不同领域的应用,例如电信和生物医学。接下来是硅光子学的历史概述,介绍了硅光子学的兴起与发展,这一技术的实现依赖于对硅绝缘体波导的深刻理解,这些波导作为硅光子学的基础器件,在光电集成芯片上承载着光信号的传输任务。 硅光子学的被动器件部分讲述了波导、MMI和AWG等基本构件,它们负责光信号的路由和分配,被动器件在硅光子集成电路中充当基础角色,是实现复杂光学功能不可或缺的组件。 在主动硅光子器件部分,涉及到的光调制、检测和发射技术是实现光通信、光信息处理等复杂功能的核心,这些功能的实现可以极大提高数据传输的速度和可靠性。 在硅光子学的当前趋势和挑战部分,课程内容提出了光子学与微电子学(如VLSI CMOS技术)结合的可能性,以及硅光子学面临的竞争技术,这些内容帮助我们理解硅光子学在未来微电子集成领域中的潜在作用。 在非线性硅光子学部分,探讨了在硅材料中实现的非线性光学效应及其相关的光子器件,这些器件在进行光学放大、波长转换等高级光信号处理方面具有重要应用。 这份“Silicon Photonics 短教程”为我们提供了一个关于硅光子学发展的全面视角,涵盖了从基础概念到未来趋势的多个方面,并且通过Fathpour博士的专业知识和丰富的研究背景,为我们带来了该领域的最新进展和深入理解。
2024-09-29 11:25:34 8.4MB 硅光子学
1
大数据-算法-飞秒激光诱导无机有机杂化光子学微结构与非线性光学材料的研究.pdf
2022-05-03 09:07:50 5.15MB big data 算法 文档资料
大数据-算法-飞秒激光诱导无机—有机杂化光子学微结构与非线性光学材料的研究.pdf
2022-05-03 09:07:49 5.15MB big data 算法 文档资料
光子学外延晶片行业调研及趋势
2022-02-14 19:03:38 385KB 行业分析
1
SiEPIC工具 -用于硅光子布局,设计,验证和电路仿真 由 ,(C)2015-2020,与贡献:, ,, 。 软件包。 edX课程中提供的有关硅光子学的设计,布局,制造,测试,数据分析的说明 Lukas Chrostowski和Michael Hochberg撰写的《以及教科书《 。 可以通过电子束光刻进行制造,包括制造。 引用这项工作: Lukas Chrostowski,Lu Zeqin Lu,Jonas Flueckiger,Xu Wang,Jackson Klein,Amy Liu,Jaspreet Jhoja,James Pond,“”,Proc.Natl.Acad.Sci.USA,88:5873-5877。 SPIE 9891,硅光子学和光子集成电路V,989114(2016年5月13日); doi:10.1117 / 12.2230376。 Lukas Ch
2022-01-26 14:49:39 73.97MB Python
1
schmidt变量化matlab代码PWE-JDQR GNU-Octave / MATLAB 在光子学平面波扩展中应用 QR 型 Jacobi-Davidson 算法进行内部特征值计算的实现。 由希腊 Harokopio 大学信息学和远程信息处理系的 Thomas Kamalakis 编码 在 GNU/Octave 版本 4.0.0 和 MATLAB 8.5.0.197613 (R2015a) 上测试 有关许可的详细信息,请参阅 LICENCE.txt。 m 文件说明: PWE_JDQR.m 是一个示例 m 文件,它说明了 JDQR 算法在光子晶体结构中的使用。 jdqr.m 是我对 HERMITIAN 矩阵的 JDQR 算法的实现。 不要在非 Hermitian 特征问题中使用。 MV.m 描述了特征矩阵对向量的作用electrical_tensors.m 计算平均lattice_vectors_rect.m 计算倒易晶格向量所需的介电张量。 电介质平均2.m 执行电介质平均。 mymgs.m 执行修改的 Gram-Schmidt 正交化。 orth_vecs.m 计算磁场扩展中使用
2021-12-28 11:47:46 14KB 系统开源
1
光子学的经典著作,光子学专业人员必读的教程,国外光子学的教科书,本书是英文原版1-8章,由于资源大小受限,以后章节后续再传.
2021-12-06 09:00:44 19.71MB 光子学 基础教程
1
光子学——专业英语光束控制的逻辑分析.docx
2021-10-13 19:04:28 1.33MB 光子学 光束 光控制
1