为了提高光伏发电功率预测的精度,本文在结合灰色预测算法(GM)与神经络预测算法优点的基础上,提出一
种基于灰色径向基函数(Radical Basis Function, RBF)和神经网络光伏发电功率预测模型。 该预测模型综合了灰色预
测算法所需历史数据少以及 RBF 神经网络预测算法自学习能力强的优点。 最后,运用南昌地区夏季和冬季晴天、阴
天、雨天光伏发电历史数据在 MATLAB 应用平台编程实现对 GM-RBF 神经网络预测模型的预测精度进行验证,得出
基于 GM-RBF 神经网络光伏发电预测模型在夏季晴天预测误差为 6.495%、夏季阴天预测误差为 12.146%、夏季雨天
预测误差为 21.531%、冬季晴天预测误差为 8.457%、冬季阴天预测误差 14.379%、冬季雨 天预 测 误 差为 18.495%,其
预测精度均高于灰色预测算法和 RBF 神经网络预测算法
1