在人工智能和机器学习领域中,目标检测技术是计算机视觉的重要分支。它旨在通过算法自动识别和定位图像中的各种目标物体,并通常包括分类和定位两个任务。随着深度学习的快速发展,目标检测技术已经取得了显著的进展。然而,由于复杂场景和物体外观的多样性,目标检测仍然面临不少挑战,比如物体遮挡、小物体检测、复杂背景下的识别等。 在这些挑战中,先验知识的引入被认为是提升目标检测性能的有效手段之一。先验知识可以来源于多个渠道,包括但不限于领域知识、标注数据、相关任务的先验信息等。先验知识的引导能够帮助模型更好地理解和预测图像中的对象,特别是在数据有限或者特征提取困难的情况下,先验知识的引入能够显著提高目标检测的准确性。 先验知识引导的目标检测相关论文通常会探讨如何将先验知识融入到目标检测模型中,以及这种方式对检测性能的具体影响。这些论文可能会涉及多种不同的策略和方法,例如通过引入先验形状信息来增强模型对特定物体类别的识别能力,或者利用图像的上下文信息来改善检测结果。此外,一些研究可能关注于如何自动生成或学习先验知识,以此构建更为鲁棒的目标检测系统。 先验知识引导的目标检测研究通常需要大量的实验验证。这些研究不仅仅限于算法和模型的提出,还包括各种评估指标的设计和对比实验,以确保新提出的策略或方法在实际应用中的有效性和优越性。同时,这些论文也会提供详尽的理论分析和数学证明,支持其观点。 在实际应用中,目标检测技术已经被广泛应用于安防监控、自动驾驶、机器人视觉、医疗影像分析等多个领域。通过使用先验知识引导的目标检测技术,不仅可以提高系统的准确率,还能够提升算法的运行效率和适应性。 本篇论文可能会包含以下内容:深度学习在目标检测中的应用,先验知识的定义和分类,如何有效地集成先验知识到目标检测模型中,各种先验知识引导方法的比较,实验结果和性能分析,以及对目标检测未来发展方向的展望。 由于本篇论文的具体内容没有在文件中提供,所以以上内容均是对该论文可能涉及的知识点和主题进行的推测,具体内容还需查看实际的论文文件才能获得。
2025-10-23 15:17:55 306B 源码 完整源码
1
从数据中学习结构是贝叶斯网络研究最重要的基本任务之一。 特别地,学习贝叶斯网络的可选结构是一个不确定的多项式时间(NP)难题。 为了解决这个问题,已经提出了许多启发式算法,并且其中一些在不同类型的先验知识的帮助下学习贝叶斯网络结构。 然而,现有算法对先验知识有一些限制,例如质量限制和使用限制。 这使得很难在这些算法中很好地利用先验知识。 在本文中,我们将先验知识引入了马尔可夫链蒙特卡洛(MCMC)算法,并提出了一种称为约束MCMC(C-MCMC)算法的算法来学习贝叶斯网络的结构。 定义了三种类型的先验知识:父节点的存在,父节点的不存在以及分布知识,包括边缘的条件概率分布(CPD)和节点的概率分布(PD)。 所有这些类型的先验知识都可以轻松地用在该算法中。 我们进行了广泛的实验,以证明所提出的方法C-MCMC的可行性和有效性。
2024-04-09 10:39:16 2.16MB 研究论文
1
从数据中学习结构是贝叶斯网络研究最重要的基本任务之一。 特别地,学习贝叶斯网络的可选结构是一个不确定的多项式时间(NP)难题。 为了解决这个问题,已经提出了许多启发式算法,并且其中一些在不同类型的先验知识的帮助下学习贝叶斯网络结构。 然而,现有算法对先验知识有一些限制,例如质量限制和使用限制。 这使得很难在这些算法中很好地利用先验知识。 在本文中,我们将先验知识引入了马尔可夫链蒙特卡洛(MCMC)算法,并提出了一种称为约束MCMC(C-MCMC)算法的算法来学习贝叶斯网络的结构。 定义了三种类型的先验知识:父节点的存在,父节点的不存在以及分布知识,包括边缘的条件概率分布(CPD)和节点的概率分布(PD)。 所有这些类型的先验知识都可以轻松地用在该算法中。 我们进行了广泛的实验,以证明所提出的方法C-MCMC的可行性和有效性。
2022-12-05 16:39:31 1024KB 研究论文
1
该例程获取循环的信噪比没有先验知识的肌电图 (EMG) 信号信号。 此例程的输出可能会进一步用作输入用于确定接通和偏移的双阈值检测器的参数肌肉活动。 可以找到此代码中执行的过程并基于以下科学文章: Agostini, V., & Knaflitz, M. (2012)。 估计的算法期间产生的表面肌电信号的信噪比循环运动。 IEEE 生物医学工程汇刊,59(1), 219–225。 doi:10.1109/TBME.2011.2170687
2022-11-12 19:31:43 38KB matlab
1
在车牌先验知识的基础上提出了一种基于垂直投影特征值的分割方法。大量实验表明,该算法能够快速找到字符之间的最优分割点,并自动去除车牌垂直边框和其他噪声点的干扰,适用于各种质量的车牌图像,分割准确率较高。
1
针对贝叶斯网络结构学习方法难以兼顾高准确率和高效率的问题,提出了一种基于Markov Chain Monte Carlo(MCMC)方法的贝叶斯网络结构学习方法的改进。改进包括:使用依赖关系分析,利用统计学的方法对采样空间进行大幅缩减,能够在精确控制准确度的情况下大幅提高时间效率;结合先验知识,从理论角度将先验知识融入评分中得到完全服从后验分布的结果;搜索最优子结构,对于特定的一些结构搜索最优子结构而不是采用贪心的方法,提高了贝叶斯网络结构学习的准确率。通过理论分析可以证明时间复杂度得到了大幅的降低。并且可以在牺牲可预知的准确率的情况下,将指数时间复杂度降为线性时间。大量的数据实验表明,经改进后的方法在时间和准确性上都具有良好的表现。
1
基于神经网络和先验知识的低分辨率车牌字符复原方法,王新年,张涛,针对视频监控系统采集的车牌图像分辨率低和模糊不清的问题,结合视频监控系统相对固定和车牌字符集有限的特点, 提出了基于神经网�
2022-02-27 10:00:46 226KB 图像处理
1
基于多尺度纹理特征并嵌入先验知识K均值的锑浮选过程故障状态识别
2021-03-03 21:09:07 512KB 研究论文
1
基于多尺度纹理特征并嵌入先验知识K均值的锑浮选过程故障状态识别
2021-02-24 18:05:04 689KB 研究论文
1
 文中在研究现有先验知识与支持向量机融合的基础上,针对置信度函数凭经验给出的不足,提出了一种确定置信度函数方法,更好地进行分类。该方法是建立在模糊系统理论的基础上:将样本的紧密度信息作为先验知识应用于支持向量机的构造中,在确定样本的置信度时,不仅考虑了样本到所在类中心之间的距离,还考虑样本与类中其它样本之间的关系,通过模糊连接度将支持向量与含噪声样本进行区分。文中将基于先验知识的支持向量机应用于医学图像分割,以加拿大麦吉尔大学的brainWeb模拟脑部数据库提供的不同噪声的图像进行实验,实验结果表明采用基于先验知识的支持向量机比传统支持向量机具有更好的抗噪性能及分类能力。
1