从数据中学习结构是贝叶斯网络研究最重要的基本任务之一。 特别地,学习贝叶斯网络的可选结构是一个不确定的多项式时间(NP)难题。 为了解决这个问题,已经提出了许多启发式算法,并且其中一些在不同类型的先验知识的帮助下学习贝叶斯网络结构。 然而,现有算法对先验知识有一些限制,例如质量限制和使用限制。 这使得很难在这些算法中很好地利用先验知识。 在本文中,我们将先验知识引入了马尔可夫链蒙特卡洛(MCMC)算法,并提出了一种称为约束MCMC(C-MCMC)算法的算法来学习贝叶斯网络的结构。 定义了三种类型的先验知识:父节点的存在,父节点的不存在以及分布知识,包括边缘的条件概率分布(CPD)和节点的概率分布(PD)。 所有这些类型的先验知识都可以轻松地用在该算法中。 我们进行了广泛的实验,以证明所提出的方法C-MCMC的可行性和有效性。
2024-04-09 10:39:16 2.16MB 研究论文
1
从数据中学习结构是贝叶斯网络研究最重要的基本任务之一。 特别地,学习贝叶斯网络的可选结构是一个不确定的多项式时间(NP)难题。 为了解决这个问题,已经提出了许多启发式算法,并且其中一些在不同类型的先验知识的帮助下学习贝叶斯网络结构。 然而,现有算法对先验知识有一些限制,例如质量限制和使用限制。 这使得很难在这些算法中很好地利用先验知识。 在本文中,我们将先验知识引入了马尔可夫链蒙特卡洛(MCMC)算法,并提出了一种称为约束MCMC(C-MCMC)算法的算法来学习贝叶斯网络的结构。 定义了三种类型的先验知识:父节点的存在,父节点的不存在以及分布知识,包括边缘的条件概率分布(CPD)和节点的概率分布(PD)。 所有这些类型的先验知识都可以轻松地用在该算法中。 我们进行了广泛的实验,以证明所提出的方法C-MCMC的可行性和有效性。
2022-12-05 16:39:31 1024KB 研究论文
1
该例程获取循环的信噪比没有先验知识的肌电图 (EMG) 信号信号。 此例程的输出可能会进一步用作输入用于确定接通和偏移的双阈值检测器的参数肌肉活动。 可以找到此代码中执行的过程并基于以下科学文章: Agostini, V., & Knaflitz, M. (2012)。 估计的算法期间产生的表面肌电信号的信噪比循环运动。 IEEE 生物医学工程汇刊,59(1), 219–225。 doi:10.1109/TBME.2011.2170687
2022-11-12 19:31:43 38KB matlab
1
在车牌先验知识的基础上提出了一种基于垂直投影特征值的分割方法。大量实验表明,该算法能够快速找到字符之间的最优分割点,并自动去除车牌垂直边框和其他噪声点的干扰,适用于各种质量的车牌图像,分割准确率较高。
1
针对贝叶斯网络结构学习方法难以兼顾高准确率和高效率的问题,提出了一种基于Markov Chain Monte Carlo(MCMC)方法的贝叶斯网络结构学习方法的改进。改进包括:使用依赖关系分析,利用统计学的方法对采样空间进行大幅缩减,能够在精确控制准确度的情况下大幅提高时间效率;结合先验知识,从理论角度将先验知识融入评分中得到完全服从后验分布的结果;搜索最优子结构,对于特定的一些结构搜索最优子结构而不是采用贪心的方法,提高了贝叶斯网络结构学习的准确率。通过理论分析可以证明时间复杂度得到了大幅的降低。并且可以在牺牲可预知的准确率的情况下,将指数时间复杂度降为线性时间。大量的数据实验表明,经改进后的方法在时间和准确性上都具有良好的表现。
1
基于神经网络和先验知识的低分辨率车牌字符复原方法,王新年,张涛,针对视频监控系统采集的车牌图像分辨率低和模糊不清的问题,结合视频监控系统相对固定和车牌字符集有限的特点, 提出了基于神经网�
2022-02-27 10:00:46 226KB 图像处理
1
基于多尺度纹理特征并嵌入先验知识K均值的锑浮选过程故障状态识别
2021-03-03 21:09:07 512KB 研究论文
1
基于多尺度纹理特征并嵌入先验知识K均值的锑浮选过程故障状态识别
2021-02-24 18:05:04 689KB 研究论文
1
 文中在研究现有先验知识与支持向量机融合的基础上,针对置信度函数凭经验给出的不足,提出了一种确定置信度函数方法,更好地进行分类。该方法是建立在模糊系统理论的基础上:将样本的紧密度信息作为先验知识应用于支持向量机的构造中,在确定样本的置信度时,不仅考虑了样本到所在类中心之间的距离,还考虑样本与类中其它样本之间的关系,通过模糊连接度将支持向量与含噪声样本进行区分。文中将基于先验知识的支持向量机应用于医学图像分割,以加拿大麦吉尔大学的brainWeb模拟脑部数据库提供的不同噪声的图像进行实验,实验结果表明采用基于先验知识的支持向量机比传统支持向量机具有更好的抗噪性能及分类能力。
1