C# - 图片抠 - PP.Matting.HRNET - 含模型 - 完整可运行 。Sdcb.PaddleInference.dll, YamlDotNet.dll,ppmatting-hrnet_w18-human_512 在当今快速发展的信息技术领域,图处理技术的应用变得越来越广泛,尤其是在图抠图领域,它为人们提供了丰富多彩的视觉体验。在众多图抠图工具中,C#作为一种功能强大的编程语言,因其高效性和易用性在图处理中占有重要地位。C#通过集成不同算法库,可以实现复杂图的高效抠处理,尤其是在处理包含复杂背景和人体图时,能够提供较好的抠效果。 本文件介绍的项目名为"C# - 图片抠 - PP.Matting.HRNET - 含模型 - 完整可运行",其核心内容是使用PP.Matting.HRNET算法进行图。PP.Matting.HRNET算法是一种深度学习方法,用于提高图的质量,特别是针对人体边缘的精细处理。在计算机视觉任务中,抠通常指的是将图中的前景物体与背景分离,这对于图合成、虚拟现实和视频编辑等领域至关重要。 在实际应用中,PP.Matting.HRNET算法通过构建一个高分辨率的网络结构,能够在保持边缘细节的同时,更好地保留图中的人体特征。由于算法的复杂性,开发者往往需要集成预训练模型,并借助特定的库文件来实现算法的运行。项目中提到的"Sdcb.PaddleInference.dll"和"YamlDotNet.dll"就是此类库文件,它们分别用于加载和运行预训练模型以及处理配置文件。此外,"ppmatting-hrnet_w18-human_512"则是PP.Matting.HRNET模型的特定版本,用于执行高精度抠。 项目文件列表中的"App.config"通常用于存储应用程序的配置信息,而"Form1.cs"、"Form1 Designer.cs"、"Program.cs"则包含了程序的主界面和入口点代码,这些是构建桌面应用程序的基本文件。"抠-PP.Matting.HRNET.csproj"是项目的配置文件,它定义了项目构建和运行的相关设置。"Form1.resx"用于管理资源文件,比如图、字符串等本地化资源。"obj"和"bin"文件夹则分别用于存放编译过程中的中间文件和最终生成的可执行文件。 在"C# - 图片抠 - PP.Matting.HRNET - 含模型 - 完整可运行"项目中,开发者可以利用C#语言结合上述提到的算法和库,无需依赖于绿幕等硬件设备,即可实现高质量的图。这不仅提高了图处理的灵活性,也降低了成本,特别是在需要对大量图进行快速处理时。 值得注意的是,项目的实现除了需要正确的代码逻辑之外,还需要一个稳定的运行环境,包括安装有.NET框架以及相应的库依赖。此外,由于该项目使用了预训练的深度学习模型,因此需要一定的硬件资源,比如支持CUDA的GPU,以加速模型的推理过程。 "C# - 图片抠 - PP.Matting.HRNET - 含模型 - 完整可运行"项目提供了一种高效的图解决方案,利用深度学习技术,能够实现无绿幕背景下的高质量图,对于需要进行图编辑和处理的专业人士而言,这无疑是一个非常实用的工具。
2025-08-02 16:04:05 346.76MB 图像处理
1
本文档是关于C#语言实现的图片抠项目,特别是利用RVM(Region-based Video Matting)算法,一个无绿幕的图片抠技术,该项目包含了一个完整的运行模型,用户可以通过源码进行学习和运行。 从文件名来看,该压缩包包含了多个C#项目文件,主要的文件类型有: - .cs:这是C#程序的主要源代码文件,包括用户界面代码、业务逻辑处理代码等。 - .Designer.cs:这是自动生成的文件,用于存放Windows窗体设计信息。它与对应的窗体(如Form1)一起工作,用于管理界面元素的布局和属性。 - .config:这个文件配置应用程序的设置,比如连接字符串、应用程序设置等。 - .csproj:这是C#项目的配置文件,记录了项目的结构、依赖和构建规则。 - .resx:资源文件,用于存储非代码资源,如字符串、图和用户界面布局。 - obj和bin文件夹:分别用于存放编译过程中的中间文件和最终的编译输出文件。 具体到每个文件的作用: - App.config:配置应用程序级别的信息,如数据库连接字符串和全局变量。 - Form1.cs和Form1.Designer.cs:这两个文件共同构成了用户界面的代码部分。Form1.cs包含实际处理UI逻辑的代码,而Form1.Designer.cs则负责界面的布局和控件属性的自动化生成与管理。 - LockBitmap.cs:这个文件可能包含有关处理图的位图锁定和操作的代码,这在图片抠过程中可能是必要的,因为需要访问和修改图数据。 - Program.cs:这是C#程序的入口点,包含了Main方法,负责程序的启动和流程控制。 - 抠-RVM.csproj:这个文件包含了项目的构建信息,指定了需要编译的文件和依赖关系等。 - Form1.resx:这个资源文件包含了Form1窗体使用的本地化资源,如字符串和图片等。 - obj、bin文件夹:存放编译生成的中间文件和可执行文件等。 在使用该源码时,用户需要注意的是,RVM算法是一种比较先进和复杂的图处理技术,它通过分析视频中的区域背景,实现精确的图抠取。而该项目提供了一个完整的实现,包括了相关的算法处理和用户界面,使得无需绿幕即可实现图片抠。这对于需要进行图处理但又不想从零开始搭建算法模型的开发者来说,是非常有价值的。 另外,由于文档提到项目是"完整可运行"的,这意味着用户下载后只需要编译并运行,便能看到实际的效果,并可以通过源码进行学习和修改。这对于学习和研究图识别技术,特别是RVM算法的开发者来说,是一个很好的实践平台。 根据上述分析,该项目适合的用户群体包括: 1. 刚接触图处理和C#编程的初学者。 2. 想要实现复杂图功能的开发人员。 3. 对RVM算法有兴趣的研究人员和学生。 该项目以其完整性、可运行性和包含的高级图处理技术,成为了一个宝贵的资源,对于广大图处理爱好者和专业人士来说,都是一个值得深入探究的案例。
2025-07-23 09:21:11 150.77MB 图像识别
1
fgljp Genero GAS(例如代理)可运行GBC程序fgl(j)ava(p)roxy使用IMPORT JAVA的负载 动机 如果您搜索一个简单的命令行工具以在桌面浏览器(然后是远程)中运行GBC,则fgljp是适合您的工具。 它(几乎) $ fglrun prog arg1 arg2 ,只需使用 $ fgljp prog arg1 arg2 先决条件:FGL> = 3.10 JAVA> = 8 怎么运行的 fgljp启动给定程序,并为fglrun GUI输出设置http服务器和套接字服务器(都在同一端口上侦听:fgljp自动感知协议)。 它将打开指向默认URL的默认浏览器:瞧,您应该会看到该应用程序,并且DISPLAY语句会通过GDC一样显示在stdout上。 安装 您不一定需要安装fgljp。 如果您确实签出了此存储库,则可以致电 $ <path_to_this_rep
2025-07-22 09:39:41 49KB Roff
1
EDID(Extended Display Identification Data)是电子设备之间用于识别显示器特性的标准,它包含了显示器的基本信息,如分辨率、刷新率、色彩深度等。美国晶公司(Silicon Image)是一家专注于高速信号传输技术的公司,提供了名为“edidtool”的实用工具,用于编辑和管理这些数据。 EDID工具的主要功能包括: 1. **读取EDID**:用户可以使用edidtool读取显示器的EDID信息,了解显示器的实际规格,包括最大分辨率、支持的刷新率、颜色空间等。 2. **编辑EDID**:在某些情况下,可能需要修改EDID,例如当显示器不被系统正确识别或需要模拟不同类型的显示器时。edidtool允许用户编辑和创建自定义的EDID配置,以便系统按照特定设置与显示器通信。 3. **备份与恢复**:工具还提供了备份和恢复EDID的功能,以防误操作导致的问题,用户可以将原始EDID信息保存并随时恢复。 4. **虚拟EDID**:对于开发或测试环境,可能需要设置虚拟EDID,以模拟不同的显示设备。edidtool可以帮助创建和应用这些虚拟配置。 5. **兼容性测试**:通过更改EDID信息,可以测试系统与各种不同显示器的兼容性,这对于驱动程序开发者和硬件工程师来说是非常有用的。 使用Silicon Image的edidtool时,需要注意以下几点: - 在编辑EDID前,务必备份原始信息,以免造成不可逆的错误。 - 编辑EDID可能会导致系统不稳定,尤其是如果修改后的信息与实际显示器不符。 - 对于普通用户,通常无需手动编辑EDID,这项功能主要针对专业技术人员和开发者。 - 在Windows系统中,可能需要以管理员权限运行edidtool,以确保对系统注册表的修改权限。 Silicon Image Edid Tool压缩包可能包含以下内容: 1. `edidtool.exe`:主程序,用于执行EDID的读取、编辑和管理操作。 2. `Readme.txt`:包含了使用指南和注意事项。 3. `Examples`:可能包含一些示例配置文件或教程。 4. `License.txt`:软件的许可协议,规定了软件的使用条件。 在实际使用中,用户需根据提供的文档或者在线教程来学习如何操作这个工具,确保正确无误地进行EDID的管理和编辑。对于非专业人士,谨慎操作,避免对显示器或系统造成不必要的影响。
2025-07-14 09:52:33 280KB edid tool
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
2025-07-09 18:27:33 5.33MB 毕业设计 课程设计 项目开发 资源资料
1
植被覆盖度( FVC)指植被(叶、茎、枝)在地面垂直投影面积占区域总面积比例。 元二分模型计算:FVC=(NDVI - NDVI_soil)/(NDVI_veg - NDVI_soil) 式中,NDVI_soil为完全裸土或无植被覆盖区域NDVI值,NDVI_veg为完全被植被覆盖的元NDVI值。累计百分比为5%时的NDVI值为NDVI_soil,累计百分比为95%时的NDVI值为NDVI_veg。
2025-06-15 17:33:19 1KB python 像元二分模型
1
基于深度学习的图识别:猫狗识别 一、项目背景与介绍 图识别是人工智能(AI)领域的一项关键技术,其核心目标是让计算机具备人类一样“看”和“理解”图的能力。借助深度学习、卷积神经网络(CNN)等先进算法,图识别技术实现了从图信息的获取到理解的全面提升。近年来,这一技术已在医疗、交通、安防、工业生产等多个领域取得了颠覆性突破,不仅显著提升了社会生产效率,还深刻改变了人们的生活方式。猫狗识别的实际应用场景 该模型由两层卷积层和两层全连接层组成,主要用于图分类任务。 第一层卷积层: 将输入的224×224×3图通过3×3卷积核映射为112×112×16的特征图。 第二层卷积层: 将特征图进一步转换为 56×56×32。 池化层: 每层卷积后均接一个2×2的最大池化层,用于减少特征图的空间维度。 全连接层:第一层全连接层将向量映射。 第二层全连接层输出对应类别的概率分布(由 num_classes 决定)。 激活函数:使用ReLU作为激活函数。该模型具备较低的参数量,适用于轻量级图分类任务。
2025-06-09 12:24:39 416KB 实验报告 深度学习 python
1
### 单空间摄影测量后方交会程序代码(VC++) #### 概述 本文将详细介绍一份关于单空间摄影测量后方交会的程序代码,该代码使用C++编写,并在西南交通大学土木工程学院测绘工程专业进行研究与实践。单空间后方交会在摄影测量领域具有重要的应用价值,它可以通过分析单个图来确定相机的位置和姿态,以及场景中的某些三维点坐标。本程序主要处理了以下关键步骤: 1. **输入数据**:包括控制点的影坐标和地面坐标。 2. **迭代计算**:利用初始估计值逐步优化相机位置、姿态参数等。 3. **旋转矩阵构建**:根据迭代得到的角度参数构建旋转矩阵。 4. **系数阵和常数项计算**:用于求解未知数的线性方程组。 #### 输入数据格式 输入文件包含控制点的影坐标(素坐标)和相应的地面坐标。具体格式如下所示: ``` [pic] ``` 这里`[pic]`代表具体的数值对,每一对由影坐标和对应的地面坐标组成,例如: ``` xi yi Xg Yg Zg ... ``` 其中`xi`和`yi`表示第i个控制点的影坐标;`Xg`, `Yg`, 和`Zg`表示其地面坐标。 #### C++源程序解析 本程序采用模板编程技术来提高代码复用性与灵活性,并且运用了一些基本的数学库函数,如`cmath`来进行必要的数学运算。 1. **变量定义** - 内方位元素`x0`, `y0`, 和焦距`fk`。 - 估算的比例尺`m`。 - 控制点信息矩阵`B`。 - 旋转矩阵`R`。 - 未知数矩阵`XG`。 - 临时矩阵`AT`、`ATA`、`ATL`。 2. **读取控制点数据** 通过`input()`函数从文件中读取控制点的影坐标和地面坐标,并存储在数组`B`中。 3. **确定未知数的初始值** - 计算所有地面坐标的平均值`Xs`, `Ys`, `Zs`作为初始估计值的一部分。 - 根据这些平均值及其它已知参数(如焦距`fk`),设定初始的相机位置和姿态参数。 4. **迭代计算** - 使用`do...while`循环进行迭代计算,直到满足终止条件为止。 - 在每次迭代过程中,首先构建新的旋转矩阵`R`。 - 然后根据当前的旋转矩阵计算系数矩阵`A`和常数项向量`L`。 5. **系数矩阵和常数项计算** - 对于每个控制点,根据旋转矩阵和相机模型计算相应的系数矩阵`A`和常数项向量`L`。 - 这些系数和常数项用于后续的线性方程组求解,从而进一步更新相机位置和姿态参数的估计值。 #### 总结 这份C++程序提供了完整的单空间摄影测量后方交会的实现方法,包括了数据读取、初始值设定、迭代计算过程以及最终结果的输出。通过对程序的逐行解析,我们可以清楚地了解到整个计算流程及其背后的数学原理。这种技术在测绘、遥感等领域有着广泛的应用前景,尤其是在需要从单一图中恢复三维信息的情况下尤为有用。
1
这个绘图库简化了 VC 下的绘图,可以在 VC 下 TC 那么简单的绘图(其实比 TC 还简单强大)(内附范例),使初学者也能很容易的做出来贪吃蛇、俄罗斯方块、推箱子、连连看等经典小游戏。 适用:初学者入门、初学者提高编程兴趣、计算机图形学试验等。 不适用:做产品。 详见:http://hi.baidu.com/yangw80/blog/item/63ff598072a9f9d09023d97f.html
2025-05-30 19:04:11 223KB graphics.h graph
1
在现代电子工程领域,模拟与数字转换技术一直是研究的热点,其中异步逐次逼近寄存器(SAR)模数转换器(ADC)以其低功耗和高精度的特点在众多应用中占据了重要位置。本文所探讨的异步SAR simulink模型,是一种结合了MATLAB仿真环境与电路模型的先进技术,旨在提供一个灵活且可调整精度的仿真平台,以便于工程人员进行各类电路设计和验证工作。 异步SAR ADC的工作原理主要是通过逐次逼近的方式,将模拟信号转换为数字信号。它通常包括电容阵列、比较器、控制逻辑等关键组成部分。在MATLAB环境下,通过使用Simulink工具箱,可以构建一个可视化的模型,该模型模拟了异步SAR ADC的工作过程,并允许用户通过调整参数来改变电路的精度和性能,这对于适应不同的应用场景至关重要。 此外,现代电子系统中混合架构的ADC设计越来越受欢迎,它们结合了多种不同的ADC技术,以实现更优的性能。例如,混合了zoom ADC的技术可以在保证高精度的同时,提供更高的采样率。在这些混合架构设计中,异步SAR simulink模型可以作为一个模块,与其他类型的ADC模型相融合,从而实现更为复杂的电路设计和仿真。 在提供的压缩包文件中,包含了多个与异步模型和混合架构相关的技术文档和探讨文章。例如,《深入解析王兆安电力电子技术中的整流.doc》可能提供了整流技术的深入分析,这对于理解电源管理系统中ADC的应用具有指导意义;而《异步模型技术分析随着科技的飞速.html》、《异步模型的技术分析与应用探讨在数.html》等HTML文档,可能涉及了异步模型的最新发展动态和技术应用;《探秘异步仿真以混合架构模型为切入点在这个数字时.html》等则可能详细描述了异步模型在混合架构中的仿真技术应用。 为了更加深入地理解异步SAR ADC的工作原理及其在不同电路设计中的应用,工程人员可以通过参考这些文档,结合仿真模型进行实践操作。此外,通过调整模型中的参数,用户可以实现对ADC精度的精细控制,这对于研究和开发高精度、低功耗的电子系统尤为重要。 异步SAR simulink模型不仅为研究者提供了一种新的电路仿真手段,也促进了现代电子系统设计的发展。它所具有的灵活性和可调整性,使得工程师们能够轻松地对不同应用场景进行优化设计,进而推动了电力电子技术的进步。
2025-05-16 11:49:56 144KB
1