采用超级电容器的供电系统输入电压范围宽,为 3V 到 40V,输出为 2.5A。 可采用超级电容器来取代传统电池(存在电解液泄漏等缺陷)作为后备电源。 在升压模式下,ISL85403升降压调节器对电容器进行放电的能力可与当今的电子元组件相媲美,有助于充分利用电容电量,节约成本。 当负载较小时,在 100 mA 电流下放电效率可高达 82%。 在大电流(1A 输出)条件下,此设计仍能达到超过 50% 的放电效率。 高性能 LDO、高能效 MOSFET 以及精准的电压监控器,造就了这一款集成式供电解决方案。 系统优势 ISL85403能够完全利用超级电容器的电量(可利用电压低至 0.3V) ISL88002电压监控器监视供电状态。 ISL9001A是一款高性能 LDO,具有 ISUPPLY低以及 PSRR 高的特点。 RJK03M5DNSN-MOSFET 支持高能效驱动器和低发热设计。
2023-04-09 10:38:35 2.46MB 瑞萨 开源 电路设计方案 电路方案
1
项目简介: 使用WP3W-RK套件实现对低功耗远距离门禁卡系统的供电。套件发射部分输入电源使用标准USB2.0供电,对接收部分的电源输出使用线性降压实现对低电压低功耗门禁卡系统的供电;远距离门禁卡系统使用非接触分时段通讯,拥有中断睡眠模式可实现超低功耗,使用板载高Q值,高谐振天线,感应距离高达65mm,适用于多种复杂场合,识别响应速度快,穿透效果好。 硬件说明: 硬件框图如下图所示,包括以下四个部分:供电部分,RFID门禁读卡部分,RFID门禁写卡部分,PC上位机部分。 (1)供电部分:使用WP3W-RK无线输电套件;系统采用标准usb2.0 5V输入,对P9235 A-R发射模块供电,无线输电接收模块P9027LP-R输出5V电压,再使用LM1117线性电源IC完成降压3.3V,可满足门禁系统供电需要。 (2)RFID门禁读卡部分:完成对RFID卡的卡号读取,ROM加密读取,实现开关门;此部分使用STM32F103 MCU作为主控,以SPI串行总线控制MF RC522 13.56MHz读写卡IC完成S50卡的卡号读取,使用232串行通信向PC端上传卡号,并读取PC返回数据来确定电磁门开关状态(此处用LED替代)。 (3)RFID门禁写卡部分:完成对RFID卡的卡号读取,ROM加密写入,数据库存储;此部分使用STM32F103 MCU作为主控,以SPI串行总线控制MF RC522 13.56MHz读写卡IC完成S50卡的卡号读取,并向PC端上传卡号,并读取PC返回数据来更改卡内ROM存储信息,显示写卡状态。 (4)PC上位机部分:完成用户卡号数据存储,MCU通讯管理;通讯用USB转串口IC PL2303电平转换完成与MCU通讯,并完成卡号和用户的数据库存储和调用,实现信息同步,是整个系统的人机交互部分。 部分硬件电路图见附件。 软件说明: 软件框图如下图所示,包括以下三个部分:RFID门禁读卡部分,RFID门禁写卡部分,PC上位机部分。 MCU软件的编辑,编译使用Keil5 MDK-ARM开发平台,可方便实现Cortex_M3内核开发和调试;系统部分运行代码见附件。 演示效果: 系统功能框图如下图所示: PCB 3D图如下图所示: 演示效果情况只能用模块来完成了,效果如下: https://www.elecfans.com/uploads/project/file/20171025/img_20171025221649.mp4 【转载自电子发烧友】
2023-02-25 18:01:55 16.67MB 无线充电 电路方案
1
本文给大家分享了一个DDR内存供电电路
1
单片机usb供电电路原理图(一) 本文以500ms为开关最高开闭时间,介绍一种既能用交流供电又能用电池供电的电源电路。该电源电路供电能力约为1W。该电源电路在正常情况下可用交流供电。用市售的听单放机的小变压器即可。从电源插孔DC拔出小变压器插头则电路自动由电池供电,插上插头则自动由交流供电。若电源电流不足,则可修改T1三极管为复合三极管,以扩大其供电电流的能力。 一般在单片机系统功率不大的情况下,本电路可满足要求,且电路结构简单,易于自制。交直流电源供电的自动转换原理:购买变压器时,应使其额定直流电压大于等于电池电压的1.1倍。一般单节干电池的电压新用时电压大干1.5V,约为1.65V左右。干电池在使用过程中电池端电压逐渐下降,内阻逐渐增大,直至电池报废。本电源电路在交直流电源同时有电时,由于交流电源电压高于直流电压使二极管D不导通,电路由交流供电。如交流电源无电或电压低,则二极管D自动导通,负载由电池供电。 本电路在合上开关K后,后续电路可延时约0.5s,以躲过电源开关的闭合时间(包括触点颤抖时间).并可在小于Ims的时间内建立电压。以保证上电复位需要。电路图如上图所示。
2022-03-09 17:17:43 215KB 单片机 usb供电电路 原理图 文章
1
前言: 目前,新能源汽车是国内外汽车行业的一大趋势,随着全球石油资源日趋枯竭,大气环境污染日益严重,以节能、环保、安全为终极目标的电动汽车,混合动力电动汽车成为全世界各国汽车产业发展的重点。而从2010年以来,由于国家政策的大力扶植,国内电动车市场呈现爆发式增长。 新能源车是一个复杂的系统。以纯电动乘用车为例,对能内部的电控部分尤其是电源转换部分最重要要求就是高可靠性,高效率。以及灵活的散热和结构设计。 Vicor针对新能源汽车行业开发DCM290P138T600A40模块,以高压动力电池为输入,给12V蓄电池以及车身控制单元供电。目前电动车市场分立器件DC/DC解决方案,有体积大,效率低等限制。而DCM产品对此做了极大的改进。DCM产品有以下特性: 160~420V宽范围输入,适合绝大部分乘用车动力电池范围。 600W, 43.5A 连续输出,效率可达93%。 功率密度1239 W/in3,尺寸47.91*22.8*7.26mm。重量仅为29.2g。 可以多个单元直接并联,无需辅助均流电路,无需降额使用,适合各种车型的功率要求。 独特的双面散热工艺,非常适合车用水冷散热工艺。 DCM的效率和损耗曲线,峰值效率93.6%,多个并联工作无需降额。 双面水冷散热方式,设备整体体积做到最小。 多台并联的DCM原理图: 除此以外,DCM产品还有模拟和数字两个版本可选,数字版针对CAN总线架构进行优化,不但把DCM内部的状态通过PWM信号传给上位机,也可以按控制指令做输出的调整。 对于电动车车厂来说,DCM的方案可以用简单的并联实现各种功率输出的需求,用很短的研发时间就可以配置出小体积,高功率的DC/DC电源系统。 注意:附件原理图以及PCB仅供参考,不可用作商业用途!
1
参考设计是一种 BLDC 电机控制器,设计为由单个 12V(额定电压)电源供电,该电源具有在典型汽车应用中存在的较大电压范围。该板用于驱动 60W 范围内的电机,这要求电流为 5 安培。该板的尺寸和布局有助于对驱动电子设备和固件进行评估,可以轻松访问各个测试点上的关键信号。通过使用 3 触点连接器或将电机相线焊接到板中的镀通孔,可以连接各种各样的电机。为 12VDC 电源装上了保险丝,以防止测试过程中电机发生故障时板或工作台电源受到损坏。可以通过标准 JTAG 连接器或通过 PWM 输入和输出信号传送命令和电机的状态。用户还可以通过 JTAG 连接器对微控制器进行重新编程,从而允许对各种应用进行定制。 电机驱动器框图 电机驱动器PCB 附件包含以下资料 TI设计方案涉及到的重要芯片 CSD18501Q5A功率 MOSFET LM2903-Q1汽车类双路差动比较器放大器 LM4040-N-Q1精密微功耗并联电压基准电压基准 TPD2E007用于 AC 信号数据接口的 2 通道 ESD 保护阵列 ESD 保护二极管 TPS3828-33-Q1 汽车类处理器监控电路电源管理
1
前言: Vicor公司设计、制造和销售模块化功率元件,这些电源转换解决方案产品广泛应用于航空航天、高性能计算机、工业设备和自动化、电信、网络基础设施,以及车辆和运输领域。在现有的无线网络实际建设中,我们已突现一些难点,如城市居民区选址困难、现有的机房内设备拥挤、乡村及边远山区的大面积覆盖投资过于巨大等问题。电信设备供应商提出的分布式基站解决方案能够为运营商提供一流的低成本快速建网解决方案。分布式基站由射频拉远单元RRU(Radio Remote Unit)和基带处理单元BBU(Base Band Unit)组成。RRU与BBU分别承担基站的射频处理部分和基带处理部分,各自独立安装,分开放置,通过电接口或光接口相连接,形成分布式基站形态。而射频拉远单元(RRU)又分为 4 个大模块:中频模块、收发信机模块、功放和滤波模块。2G/3G的RRU中的PA功放电路主要由LDMOS构成,由于硅基GaN的效率大大提升,已经具备取代LDMOS的大部分市场潜力。GaN(氮化镓),也称为宽带隙半导体。100W时,效率超过70%,19dB增益;效率比LDMOS高出10%;功率密度为LDMOS的4倍,预期成本结构低于LDMOS而受市场热捧。 图:RRU使用介绍 但是由LDMOS的28V总线架构向48V总线升级的过程中也带来了问题,即由28V总线提高电压到50V来给处理板直接供电给设计师带来空前的挑战。 传统的硬开关高压输入情况下其缺点无法弥补,制约传统硬开关的电路的因素为: 1.硬开关 –现今, 大多数非隔离降压稳压器拓扑的开关损耗都很大. 原因是在导通和关断期间, MOSFET 同时抵受高电流和高电压应力.当开关频率与输入电压增高时,这些损耗同时增大, 局限了其可以达到的最高工作频率,效率和功率密度 2.栅极驱动损耗 –由于栅极驱动电路内的米勒电荷的功耗较高, 导至硬开关拓扑结构的栅极驱动损耗也较高 3.体二极管传导 – 当高电平端 MOSFET 导通和关闭时, 高脉动电流通过低电平端MOSFET 本身的体二极管。体二极管导通的时间越长,反向恢复损耗和体二极管传导损耗便愈高。体二极管传导也会造成破坏性的过冲和振铃。 而Vicor 的零电压开关转换器降压电路改进了这些缺点: 1.零电压开关(ZVS)的开关损耗很低 2.理想的整流开关, 体二极管传导时间极短, 几乎不被察觉 3.高输入电压仍保持高频率操作 4.内部补偿简单的, 允许高带宽,增益和相位裕度 5.由于输出电感细小,高开关频率和宽带宽反馈环路, 只需细小输出电容, 瞬态响应非常快速 6.导通时间最短20ns, 支持36:1 的高比率转换 7.高效率偏压系统结合脉冲留白, 令轻载效率非常出色。 我们通过开关电路的开关状态的切换来对比Vicor的ZVS降压电路与传统硬开关电路的区别: 图:ZVS Buck 与传统硬开关转换器的对比 我们先学习过RRU的典型电路。 传统RRU电路有如下几个功能模块, 基带处理、中频、收发以及功放和天馈。GaN 的应用产生新的+50V (30V~50V),传统的5V4 不能再由28V 直接供电,如果5V4 是12V降压下来就需要使用48V—12V的电源砖3次转换到负载点,我们折衷的改进方法是采用传统48V 隔离的电源砖实现48V 到5V4 的主板供电, 这样减少一极转换,提高整版电路的效率和可靠性,降低板上的面积和成本。 图:RRU 典型供电电路 由交流或者-48V输入转换产生48V(28V)/12V。而新型的RRU 设计包含+48V, 相对12V 总线而言,+48V 的优势是高压直流,其总线电流为原来12V总线的1/4 ,在相同的阻抗条件下的铜损为1/16,大大降低总线的导通损耗,同时高压总线的电容容量可以也有显著的降低。如果48V 直接转换到5.5V就容易进行2次电源(48V---12V----5.5V)的转换,这样可以减少在板的电源级数提高产品的可靠性。 图:48V 到PoL的电源链的改进 PI33/PI34/PI35xx Cool-Power:registered: ZVS降压稳压器为板级设计师提供最大功率密度,同时为高效负载点DC-DC稳压提供最大灵活性。高性能零电压开关(ZVS)拓扑结构的集成增加了负载点性能,提供了达98%的最佳功率效率。Cool-Power ZVS稳压器在一个高密度LGA系统级封装(SiP)中高度集成了控制电路、功率半导体和支持元件。在这里,Vicor 利用新型的高压零电压降压转换以及零电压升-降压实现48V 到负载点的直接转换。通过PI354x 和PI352x实现48V 单级转换到基带信号板的5V4 ,实现48V 转13.2V 给天馈供电。同时Vicor的特有的ZVS升降压转换实现21-60V 输入范围内28V/50V 可调输出。所
2021-11-26 12:48:22 4.75MB 射频供电 电路方案
1
电路驱动LED灯泡时采用有源以太网供电,通过蓝牙模块的控制LED灯泡。灯泡可以通过无线来打开/关闭,并用蓝牙设置亮度的9级变暗。该电路包括MAX5969A用电设备(PD)控制器,MAX16832 LED驱动器,集成MOSFET,一个MAX15062同步降压型DC-DC转换器,8位微控制器和蓝牙模块。设计包括原理图,PCB文件和材料清单。 MAX5969A从电源设备(PSE)接收功率,并提供48V直流电给MAX16832 LED驱动器和MAX15062 DC-DC变换器的。该DC-DC转换器驱动的8位微控制器和蓝牙模块。微控制器需要用户通过蓝牙模块输入,并将其转换到PWM调光信号,然后将其反馈到LED驱动器。该主板包括HM-12蓝牙模块,一个BL-600蓝牙模块,和ESP8266 Wi-Fi模块。 Android和iOS均适用。
2021-11-16 00:12:54 2.6MB poe供电电路 电路方案
1
行业资料-电子功用-具有电流监控功能的供电电路及电子设备.zip
2021-09-13 22:02:42 592KB
行业资料-电子功用-LED的电源供电电路.pdf
2021-09-09 09:02:26 522KB