为消除非受控训练环境中光照/表情变化的不利影响,控制部分遮挡/伪装对人脸图像的破坏程度,提出了一种基于低秩矩阵恢复的字典优化设计,以增强稀疏表示人脸识别的性能.首先对存在非受控干扰成分的训练字典进行低秩矩阵恢复,获得相对"干净"的训练图像进行特征提取;接着采用分块相似性先验嵌入稀疏编码的方法实现对人脸图像的分类.实验结果表明,通过改进稀疏编码字典的鉴别能力,系统能更有效地抑制光照、表情、遮挡/伪装的影响,其识别的稳健性和鲁棒性得到了明显提升.
1
高光谱图像(HSI)通常在采集过程中由于各种噪声的混合而降低质量,这些噪声可能包括高斯噪声,脉冲噪声,虚线,条纹等。 本文介绍了一种基于低秩矩阵恢复(LRMR)的HSI恢复新方法,该方法可以同时去除高斯噪声,脉冲噪声,死线和条纹。 通过按字典顺序将HSI的补丁排序为二维矩阵,可以探索高光谱图像的低秩属性,这表明干净的HSI补丁可以视为低秩矩阵。 然后,我们将HSI恢复问题公式化为LRMR框架。 为了进一步消除混合噪声,应用了“分解”算法来解决LRMR问题。 在模拟和真实数据条件下都进行了一些实验,以验证所提出的基于LRMR的HSI恢复方法的性能。
2022-07-23 22:34:24 1.5MB Go Decomposition (GoDec); hyperspectral
1
基于低秩矩阵恢复与协同表征的人脸识别算法.pdf
2022-06-07 10:59:18 714KB 人脸识别 参考文献 专业指导
将基于凸优化的低秩矩阵恢复(LRMR)理论用于背景建模,当背景不稳定时,这种方法提取运动目标的效果不佳。由于矩阵的数据表示形式破坏了视频在时间和空间上的原始结构,采用张量表征视频的高维结构特性,提出了一种基于迭代张量高阶奇异值分解(HOSVD)的运动目标提取方法。用高阶奇异值分解代替LRMR中的矩阵奇异值分解(SVD),利用增广拉格朗日乘子法重建出三维视频张量的背景部分和运动目标部分,并进一步对运动目标部分进行形态学开闭运算。实验结果证明,相比常用方法,该方法错分率更低,能更准确完整地提取运动目标。
1
高光谱图像(HSI)通常在采集过程中由于各种噪声的混合而降低质量,这些噪声可能包括高斯噪声,脉冲噪声,虚线,条纹等。 本文介绍了一种基于低秩矩阵恢复(LRMR)的HSI恢复新方法,该方法可以同时去除高斯噪声,脉冲噪声,死线和条纹。 通过按字典顺序将HSI的补丁排序为二维矩阵,可以探索高光谱图像的低秩属性,这表明干净的HSI补丁可以视为低秩矩阵。 然后,我们将HSI恢复问题公式化为LRMR框架。 为了进一步消除混合噪声,应用了“分解”算法来解决LRMR问题。 在模拟和真实数据条件下都进行了一些实验,以验证所提出的基于LRMR的HSI恢复方法的性能。
2022-04-09 16:55:22 4.96MB Go Decomposition (GoDec); hyperspectral
1
将鲁棒主成分分析、矩阵补全和低秩表示统称为低秩矩阵恢复, 并对近年来出现的低秩矩阵恢复算法进行了简要的综述。讨论了鲁棒主成分分析的各种优化模型及相应的迭代算法, 分析了矩阵补全问题及求解它的不精确增广拉格朗日乘子算法, 介绍了低秩表示的优化模型及求解算法。最后指出了有待进一步研究的问题。
2021-11-04 15:25:25 1.35MB 工程技术 论文
1
低秩矩阵恢复算法综述,内容比较易懂,用于图像修复,推荐算法等
2019-12-21 19:44:01 1.35MB 低秩矩阵 算法
1