LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN)结构,被广泛应用于处理和预测时间序列数据。在电池管理系统(BMS)中,对电池的荷电状态(State of Charge, SOC)的精确估计是保障电池安全、延长电池寿命和提高电池效率的关键技术之一。本文将详细介绍如何使用LSTM技术进行电池SOC估计,并提供一个包含两个数据集及其介绍、预处理代码、模型代码和估计结果的完整代码包,旨在为初学者提供一个全面的学习资源。 数据集是进行电池SOC估计的基础。在本代码包中,包含了两个经过精心挑选的数据集。这些数据集包括了不同条件下电池的充放电循环数据,如电压、电流、温度、时间等参数。通过分析这些数据集,可以发现电池性能随着循环次数和操作条件的变化规律,为模型的训练提供丰富的信息。 数据预处理是模型训练之前的必要步骤。在电池SOC估计中,由于原始数据通常包含噪声和异常值,且不同数据之间可能存在量纲和数量级的差异,因此需要对数据进行清洗和归一化处理。预处理代码包中的Python脚本将指导如何去除不规则数据、进行插值、归一化和数据分割等操作,以确保模型能够在一个干净、格式统一的数据集上进行训练。 模型代码是整个SOC估计过程的核心部分。本代码包提供了基于LSTM网络的SOC估计模型代码,详细展示了如何搭建网络结构、设置超参数、进行训练和验证等。其中,LSTM的多层堆叠结构可以捕捉到电池长期依赖性,这对于SOC估计至关重要。代码中还包括了模型的保存和加载机制,便于进行模型的持久化处理和后续的模型评估。 估计结果是验证模型性能的重要指标。通过在测试集上运行模型,可以得到电池SOC的估计值,并与实际值进行对比。本代码包中包含的评估脚本将帮助用户计算均方误差(MSE)、均方根误差(RMSE)等多种评价指标,从而对模型的准确性和泛化能力进行全面评估。 此外,技术博客文章在电池估计中的应用解析一引言.doc、做电池估计最基本的.html等文档,提供了对电池SOC估计方法论的深入解读和实战指南。这些文档详细介绍了电池SOC估计的意义、应用场景以及所采用技术的原理和优势,为初学者提供了从理论到实践的完整学习路径。 本代码包为电池SOC估计提供了一个从数据集获取、数据预处理、模型训练到结果评估的完整流程。它不仅适用于初学者入门学习,也为专业人士提供了一个实用的工具集。通过深入研究和实践本代码包,可以有效提升电池SOC估计的准确度,进而推动电池技术的发展和应用。
2025-09-29 11:32:46 179KB 数据仓库
1
设计并实现了一种基于TMS320C64x系列高性能通用DSPs的MPEG-4 Simple Profile编码器。详细介绍了系统的硬件结构和工作流程。为解决高分辨率视频编码的实时性问题,采用预测技术的运动估计计算法以及基于C64x CPU的软件优化技术。实验结果表明编码器对D1分辨率(720×576)视频的编码速率达到25帧/秒以上,且具有较低的码率和较好的图像质量。 在本文中,我们探讨了如何设计和实现一个基于TMS320C64x DSPs的MPEG-4实时编码器,以满足高分辨率视频编码的实时需求。TMS320C64x系列是由德州仪器(TI)公司生产的高性能通用数字信号处理器,特别适合于视频和图像处理任务。MPEG-4作为一种高效、灵活的视频压缩标准,适用于各种应用,从低码率的通信到高码率的电视广播。 文章首先介绍了MPEG-4编码的背景和重要性,指出其在多媒体通信和广播级视频应用中的广泛需求。MPEG-4提供了更高的压缩效率和更好的交互性,但其复杂的算法通常限制了实时编码的实现,特别是对于高分辨率视频。 编码系统的硬件核心是TMS320DM642 DSP芯片,它具有VelociTI.2结构,能够在一个时钟周期内处理更多数据,以实现高速运算。DM642集成了丰富的片内外设,如视频端口、以太网口、音频串口和PCI接口,简化了视频编码器的硬件设计。视频输入部分采用SAA7113芯片进行视频采集,可以直接与DM642的视频端口对接,减少了额外的逻辑控制电路。 系统的工作流程分为图像压缩卡和主机两个部分。DSP运行MPEG-4编码程序,从视频端口接收实时视频,经过编码后,通过PCI接口将压缩码流传输给主机。主机上的程序负责与用户交互,处理原始视频和压缩码流,如播放、保存、网络传输等。在内存管理方面,由于片内存储空间有限,原始图像、参考帧和重建帧存储在片外,而编码程序、全局变量等则存储在片内。EDMA(增强型直接内存访问)用于高效地传输片外数据,避免了CPU等待数据导致的性能瓶颈。 为了提高实时性,文章提出采用预测技术的运动估计计算法,这是MPEG-4编码中的关键步骤,通过估算像素块在连续帧间的运动来减少编码冗余。同时,结合C64x CPU的软件优化技术,提高了编码速度。 实验结果显示,该编码器能够以25帧/秒以上的速率对D1分辨率(720×576)的视频进行编码,同时保持较低的码率和良好的图像质量。这样的性能对于实时视频应用至关重要,确保了在不牺牲画质的前提下,实现高效的视频压缩和解压。 基于TMS320C64x DSPs的MPEG-4实时编码器设计与实现,巧妙地利用了高性能DSP的处理能力和软件优化技术,解决了高分辨率视频编码的实时性挑战。这种设计方法为视频编码领域提供了可靠的解决方案,对于视频通信、监控、教育和娱乐等应用具有重要的实践价值。
2025-09-28 21:30:38 100KB MPEG-4 TMS320C64x 软件优化 运动估计
1
第三章 载波频偏估计算法的研究 相干检测通信系统接收机的特点是利用一个本振激光器(LO)与接收到的 载波调制信号进行相干以获得基带信号。理论上,要求本振激光器的振荡频率与 信号载波的频率完全相同。但实际上,光通信系统中激光器的振荡频率高达几百 THz,在目前的光器件的工艺条件下,两个激光器的振荡频率与我们所预先设置 的振荡频率都不可能完全吻合,即每个激光器都肯定有一定量的振荡频率偏移。 假设每个激光器的可能的振荡频偏的范围是[-X,+X]Hz,则两个激光器的相对频 偏(载波频偏)的范围就可能为[.2)(’+2X]Hz。载波频偏估计算法的目的就是通 过对离散数字基带信号的处理,去除载波频偏对调相系统中符号相位的影响。 目前应用于相干光传输系统接收机中的前馈式全数字载波频偏估计算法,主 要有两种,分别为四次方频偏估计算法和基于预判决的频偏估计算法。本章详述 了这两种算法的原理、算法参数,给出了这两种算法在l 12Gb/s PM.DQPSK系 统中的仿真结果。针对目前硬件实现所面临的器件处理速率不足这一重要问题, 设计了这两种算法的并行处理结构的方案。此外,还设计了基于预判决的频偏估 计算法的初始化方案。最后,横向比较了现有的几种载波频偏估计算法。 3.1四次方频偏估计算法 3.1.1四次方频偏估计算法的原理 四次方频偏估计算法【lI】是根据M次方频偏估计算法而来的。M次方频偏估 计算法,是应用于相位调制相干接收系统中,去除本地振荡和信号载波之间的频 率偏差对调相信号的基带信号相位的损伤。之所以叫做M次方,是因为算法通 过对复数符号进行M次方运算,从而利用调制信息相位的M倍为一个恒定不变 的相位值这一结论,去除调制信息相位并进行频偏估计。宅E(D)QPS'K调制方式 下,M=4,M次方频偏估计算法就可以称为“四次方频偏估计算法"。该算法是 一种前馈式频偏估计算法,无需反馈环路。 四次方频偏估计算法的原理图如图3.1所示。 图3-1四次方频偏估计算法原理框图 14
2025-09-23 10:44:55 2.69MB 光纤,信号
1
基于三种卡尔曼滤波算法的轨迹跟踪与估计研究:多传感器信息融合应用,基于三种卡尔曼滤波算法的轨迹跟踪与多传感器信息融合技术,多传感器信息融合,卡尔曼滤波算法的轨迹跟踪与估计 AEKF——自适应扩展卡尔曼滤波算法 AUKF——自适应无迹卡尔曼滤波算法 UKF——无迹卡尔曼滤波算法 三种不同的算法实现轨迹跟踪 ,多传感器信息融合; 卡尔曼滤波算法; AEKF; AUKF; UKF; 轨迹跟踪与估计,多传感器信息融合:AEKF、AUKF与UKF算法的轨迹跟踪与估计 在现代科技领域,多传感器信息融合技术已经成为提高系统准确性和鲁棒性的重要手段。尤其是在动态系统的轨迹跟踪与估计问题上,多传感器融合技术通过整合来自不同传感器的数据,能够显著提高对目标轨迹的跟踪和预测准确性。其中,卡尔曼滤波算法作为一种有效的递归滤波器,已经被广泛应用于各种传感器数据融合的场景中。 卡尔曼滤波算法的核心在于利用系统的动态模型和观测模型,通过预测-更新的迭代过程,连续估计系统状态。然而,传统的卡尔曼滤波算法在面对非线性系统时,其性能往往受到限制。为了解决这一问题,研究者们提出了扩展卡尔曼滤波算法(EKF),无迹卡尔曼滤波算法(UKF)以及自适应扩展卡尔曼滤波算法(AEKF)等变种。 扩展卡尔曼滤波算法通过将非线性系统线性化处理,近似为线性系统来实现滤波,从而扩展了卡尔曼滤波的应用范围。无迹卡尔曼滤波算法则采用一种叫做Sigma点的方法,通过选择一组确定性的采样点(Sigma点),避免了线性化过程,能够更好地处理非线性系统。自适应扩展卡尔曼滤波算法则结合了EKF和AEKF的优点,能够自适应地调整其参数,以应对不同噪声特性的系统。 在实际应用中,这三种算法各有优劣。EKF适合处理轻微非线性的系统,而UKF在处理强非线性系统时显示出更好的性能。AEKF则因为其自适应能力,在系统噪声特性发生变化时能够自动调整滤波器参数,从而保持跟踪性能。通过多传感器信息融合,可以将不同传感器的优势结合起来,进一步提高轨迹跟踪和估计的准确性。 例如,一个典型的多传感器信息融合应用可能涉及雷达、红外、视频等多种传感器,每种传感器都有其独特的优势和局限性。通过将它们的数据融合,可以有效弥补单一传感器信息的不足,提高系统的整体性能。融合过程中,卡尔曼滤波算法扮演着关键角色,负责整合和优化来自不同传感器的数据。 在研究和应用中,通过对比分析AEKF、AUKF和UKF三种算法在不同应用场景下的表现,研究者可以更好地理解各自算法的特点,并根据实际需要选择合适的算法。例如,在系统噪声变化较大的情况下,可能更倾向于使用AEKF;而在对非线性特性处理要求较高的场合,UKF可能是更好的选择。 多传感器信息融合技术结合不同版本的卡尔曼滤波算法,在轨迹跟踪与估计中具有广泛的应用前景。随着算法研究的不断深入和技术的持续发展,未来这一领域有望取得更多的突破和创新,为智能系统提供更加精确和可靠的决策支持。
2025-09-17 16:01:41 1.48MB
1
基于藤Copula方法的持续期自相依结构以及DaR估计,叶五一,李磊,本文基于Copula方法对由高频分笔数据得到的交易量持续期进行了研究。应用多元藤Copula方法对连续几个交易量持续期之间的自相依结构进
2025-09-16 11:56:50 961KB 首发论文
1
基于Carsim与Simulink联合仿真的分布式驱动车辆状态估计模型研究:轮胎力观测与UKF SRCKF算法的鲁棒性提升,基于Carsim和Simulink联合仿真的分布式驱动车辆状态精确估计模型:UKF SRCKF算法与ASMO轮胎力观测器的融合应用,【 分布式驱动车辆状态估计模型】基于Carsim和simulink联合仿真,首先建立分布式驱动车辆轮毂电机模型,并使用pid对目标速度进行跟踪,随后在使用级联滑模观测器(ASMO)和车轮运动模型对轮胎力进行观测的基础上,使用UKF SRCKF算法对侧向车速,纵向车速,横摆角速度,质心侧偏角进行估计。 不同于基于七自由度模型的状态估计的是使用轮胎力观测器代替建立轮胎模型,防止迭代形式的误差累积(轮胎模型需要估计量作为输入,估计不准轮胎模型的输出相应误差就大);此外为了解决Cholesky分解只能处理正定矩阵的问题,使用Utchol分解法在不影响估计效果的同时提升算法的鲁棒性。 ,核心关键词:分布式驱动车辆;状态估计模型;Carsim和simulink联合仿真;轮毂电机模型;PID控制;级联滑模观测器(ASMO);UKF SRCKF算法
2025-09-15 10:48:38 2.74MB scss
1
在计算机视觉领域,运动估计是一项关键技术,特别是在学生竞赛如AUVSI SUAS(美国无人水下航行器系统学生竞赛)中。MATLAB作为一种强大的编程环境,常被用于开发和实现这种复杂的算法。本资料包“matlab开发-学生竞赛运动估计的计算机视觉”可能包含了用于训练参赛队伍进行运动估计的代码、数据和教程。 运动估计是计算机视觉中的一个核心问题,其目的是通过分析连续的图像序列来推断场景中物体或相机的运动。这一过程对于理解和重建动态环境至关重要,它涉及图像处理、几何光学和优化理论等多个领域。在AUVSI SUAS竞赛中,运动估计可以帮助无人水下航行器理解自身和周围环境的运动状态,从而更准确地导航和执行任务。 51c4701这个文件可能是一个特定版本的代码库或者项目里程碑,它可能包括以下几个部分: 1. **源代码**:MATLAB代码实现不同的运动估计算法,如光流法、块匹配、卡尔曼滤波、粒子滤波等。这些算法可以用于计算相邻帧间的像素级或物体级别的运动矢量。 2. **数据集**:包含用于训练和测试的图像序列,可能来自于实际的航拍或水下视频。这些数据集有助于验证和优化算法性能。 3. **教程和文档**:解释如何使用提供的代码以及运动估计的基本概念。这些文档可能包括步骤说明、示例应用和常见问题解答。 4. **结果可视化**:可能包含用以展示运动估计结果的MATLAB图形,如运动轨迹图、残差分析等,帮助理解和评估算法效果。 5. **实验与评估**:文件可能包含实验设置、参数调整记录以及性能指标,比如均方误差(MSE)、平均绝对误差(MAE)等,用于比较不同算法的优劣。 学习和掌握这些内容,学生不仅可以提升在AUVSI SUAS竞赛中的竞争力,还能在更广泛的计算机视觉和机器人领域打下坚实的基础。MATLAB的易用性和丰富的工具箱使其成为教学和研究的理想平台,同时,通过解决实际问题,学生也能将理论知识转化为实践技能。因此,深入理解并运用这个资料包中的内容,对于提升学生的动手能力和创新能力具有重要意义。
2025-09-14 23:52:54 14.1MB 硬件接口和物联网
1
内容概要:本文深入探讨了电池二阶等效电路模型(2RC ECM)及其在电池管理系统(BMS)中的应用。文中介绍了2RC ECM的基本结构,包括开路电压源、内阻和两个RC支路,并详细解释了如何使用最小二乘法进行参数辨识,以及如何用扩展卡尔曼滤波(EKF)进行SOC估计。同时,提供了相应的Python代码示例,帮助读者理解和实现这两个关键过程。此外,还提到了相关参考文献,为深入研究提供理论支持。 适合人群:从事电池管理系统开发的研究人员和技术人员,尤其是对电池建模和状态估计感兴趣的工程师。 使用场景及目标:适用于需要精确模拟电池行为和估计电池荷电状态的实际工程项目。通过学习本文,读者可以掌握2RC ECM的构建方法,学会使用最小二乘法和EKF进行参数辨识和SOC估计,从而提高电池管理系统的性能。 其他说明:提供的代码仅为示例,在实际应用中需要根据具体电池特性和实验数据进行调整和优化。
2025-09-11 13:41:25 407KB
1
Matlab领域上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-09-10 09:49:20 7.39MB matlab
1
内容概要:本文详细介绍了一个使用 C++ 结合 OpenCV 部署 YOLOv11-Pose 姿态估计 ONNX 模型的实例项目。该项目不仅能实现实时的人体姿势估计功能还让用户可根据自身需求调整各种检测指标如置信度门限。同时,文中详细介绍了项目背景、特点、改进方案、必要的注意事项及其具体的实现步骤包括了所需数据的格式和预处理流程并且提供了完整且注释详尽的样例源代码帮助新手开发者快速搭建起自己的实时姿态估计系统。 适用人群:具备一定 OpenCV 操作经验的研究员和软件开发者。 使用场景及目标:在诸如健身指导、舞蹈训练、人机交互等具体情境中自动捕捉与跟踪人体的动作与姿态。 额外说明:由于本方案使用ONNX模型格式,使得将同一模型移植到多种不同软硬件平台变得更加便利。
2025-09-08 10:07:14 36KB OpenCV YOLO
1