根据哥伦比亚、秘鲁和墨西哥个体的饮食习惯和身体状况估计肥胖水平数据集,依据频繁食用高热量食物(FAVC)、食用蔬菜频率(FCVC)、主餐数量(NCP)、两餐之间的食物消耗量(CAEC)、每日饮水量 (CH20)等数据特征,预测人群的肥胖水平(Obesity Prediction),肥胖水平分为7类,分别为体重不足、正常体重、超重I级、超重II级、肥胖I型、肥胖II型和III型肥胖。 利用决策树进行分析预测,内附数据集、源代码、实验分析报告以及可视化结果
2025-05-12 07:44:17 2.54MB 机器学习
1
卡尔曼滤波系列算法在轨迹跟踪与GPS数据处理中的应用:野值剔除与状态估计预测,卡尔曼滤波做轨迹跟踪 鲁棒卡尔曼滤波做野值剔除后的预测 扩展卡尔曼滤波对GPS数据进行状态估计滤波 ,核心关键词:卡尔曼滤波; 轨迹跟踪; 野值剔除预测; GPS数据状态估计滤波。,卡尔曼滤波技术:轨迹跟踪、野值剔除预测与GPS状态估计滤波 卡尔曼滤波技术是现代控制理论中一种非常重要的算法,特别是在处理线性动态系统的状态估计问题上显示出其独到的优越性。在轨迹跟踪和GPS数据处理领域,卡尔曼滤波技术的应用尤为广泛,它能够有效地结合系统模型和观测数据,进行状态估计和预测。在轨迹跟踪中,卡尔曼滤波可以对目标的运动状态进行实时跟踪,并预测其未来的位置,这对于自动驾驶、机器人导航以及各种监测系统来说具有重大的意义。 随着技术的发展,传统的一维卡尔曼滤波算法已不能满足所有场景的需求,因此出现了鲁棒卡尔曼滤波和扩展卡尔曼滤波。鲁棒卡尔曼滤波对系统模型的不准确性或者环境噪声的不确定性具有更强的适应性,它能够剔除数据中的野值,保证状态估计的准确性。而扩展卡尔曼滤波(EKF)则是针对非线性系统状态估计而设计的,它通过线性化非线性系统模型的方式,使得卡尔曼滤波的框架能够应用于更广泛的场合,比如GPS数据的滤波处理。 在实际应用中,卡尔曼滤波算法通常需要依赖于对系统的精确建模,包括系统动态模型和观测模型。系统动态模型描述了系统状态如何随时间演变,而观测模型则描述了系统状态和观测值之间的关系。卡尔曼滤波通过不断迭代执行两个主要步骤:预测和更新,来实现最优的状态估计。在预测步骤中,算法使用系统动态模型来预测下一时刻的状态,而在更新步骤中,算法结合新的观测数据来校正预测值,从而获得更准确的估计。 在处理GPS数据时,卡尔曼滤波技术同样发挥着至关重要的作用。由于GPS信号易受多路径效应、大气延迟等因素的影响,接收到的GPS数据往往包含有较大的误差。利用扩展卡尔曼滤波技术,可以对这些误差进行有效的估计和校正,从而提高GPS定位的精度。这对于车辆导航、航空运输、测绘和各种地理信息系统来说是至关重要的。 除了在轨迹跟踪和GPS数据处理中的应用,卡尔曼滤波技术还被广泛应用于信号处理、经济学、通信系统以及生物医学工程等多个领域。随着科技的进步和算法的不断改进,未来卡尔曼滤波技术有望在更多的领域和更复杂的系统中发挥其独特的作用。 卡尔曼滤波技术以其强大的预测和估计能力,在轨迹跟踪、GPS数据处理等众多领域内都发挥着不可替代的作用。随着算法的不断发展和完善,卡尔曼滤波技术将继续扩展其应用范围,为科技的进步提供有力的支撑。
2025-05-11 00:23:03 910KB
1
利用Radon—Wigner变换与Wigner—Hough估计进行线性调频信号参数的信号参数估计与雷达信号处理中的速度补偿.pdf
2025-05-10 16:09:41 54KB
1
这是年龄性别预算识别Android APP Demo,只安装在安卓手机,实时检测和识别 年龄性别预测1:年龄性别数据集说明(含下载地址)https://blog.csdn.net/guyuealian/article/details/135127124 年龄性别预测2:Pytorch实现年龄性别预测和识别(含训练代码和数据)https://blog.csdn.net/guyuealian/article/details/135556789 年龄性别预测3:Android实现年龄性别预测和识别(含源码,可实时预测)https://blog.csdn.net/guyuealian/article/details/135556824 年龄性别预测4:C/C++实现年龄性别预测和识别(含源码,可实时预测)https://blog.csdn.net/guyuealian/article/details/135556843
2025-05-01 20:46:35 45.75MB android 年龄预测 年龄估计 性别识别
1
人体姿态估计 项目链接:https://link.zhihu.com/?target=https%3A//github.com 1)方向:姿势估计 2)应用:姿势估计 3)背景:基于热图的方法已成为姿势估计的主流方法,因为其性能优越。然而,基于热图的方法在使用缩小尺寸的热图时会遭受显著的量化误差,导致性能有限,并对中间监督产生不利影响。以往的基于热图的方法依赖于额外的后处理来减轻量化误差。一些方法通过使用多个昂贵的上采样层来提高特征图的分辨率,从而提高定位精度。 4)方法:为了解决上述问题,作者创造性地将骨干网络视为一个degradation(降质)过程,并将热图预测重新构造为超分辨率任务。首先提出了SR head,通过超分辨率预测高于输入特征图(甚至与输入图像一致)的热图,以有效减少量化误差,并减少对进一步后处理的依赖。此外,提出了SRPose方法,以逐渐在粗糙到精细的方式中从低分辨率热图和退化特征恢复高分辨率热图。为了减少高分辨率热图的训练难度,SRPose使用SR head来监督每个阶段的中间特征。另外,SR head是一个轻量级通用的头部,适用于自上而下和自下而上的方法。 《轻量级超分辨率头在人体姿态估计中的应用》 人体姿态估计是计算机视觉领域中的一个关键任务,它涉及到识别图像或视频中人物的关键关节位置,如肩、肘、膝等。这一技术广泛应用于动作识别、人机交互、体育分析等领域。近年来,基于热图的方法在姿态估计中取得了显著的进步,其原理是通过预测每个关节的二维概率分布热图,然后通过峰值检测确定关节位置。然而,基于热图的方法存在一个问题,即在使用缩小尺寸的热图时,会引入显著的量化误差,这限制了其性能并影响中间监督的效果。 为了解决这个问题,研究人员提出了一种新的方法,将骨干网络视为一个降质过程,将热图预测重新定义为超分辨率任务。这一创新思路体现在“轻量级超分辨率头”(SR head)的设计上。SR head的目标是通过超分辨率技术预测出的热图具有比输入特征图更高的空间分辨率,甚至可以与原始输入图像分辨率一致,从而有效地减少量化误差,降低对后续后处理步骤的依赖。这种方法不仅提高了定位精度,还简化了模型结构。 SRPose是基于SR head提出的一种逐步恢复高分辨率(HR)热图的策略。它采用粗到细的方式,从低分辨率(LR)热图和降质特征出发,逐渐恢复出更精确的人体关节位置。在训练过程中,SR head用于监督每个阶段的中间特征,帮助模型更好地学习和优化,降低了高分辨率热图训练的复杂度。 此外,SR head的设计具有轻量级和通用性,无论是自上而下的方法(从全局图像信息开始预测关节位置)还是自下而上的方法(从局部特征开始逐渐构建全身结构),都能很好地适应。实验结果表明,SRPose在COCO、MPII和Crowd-Pose等标准数据集上超越了现有的基于热图的方法,证明了其在人体姿态估计领域的优越性。 这项工作展示了超分辨率技术在解决基于热图的人体姿态估计方法中量化误差问题上的潜力。通过轻量级的SR head设计和逐步恢复策略,模型能够在保持高效的同时提升姿态估计的准确性。这一研究为未来的人体姿态估计技术发展提供了新的思路和方向,有望在实际应用中实现更准确、更快速的人体姿态识别。
2025-04-27 17:56:11 840KB 人体姿态估计
1
基于深度学习的OFDM系统信道估计与均衡算法Matlab仿真及其误码率分析研究,基于深度学习的OFDM信道估计与均衡算法误码率分析的Matlab仿真研究,深度学习的OFDM信道估计和均衡算法误码率matlab仿真 ,深度学习; OFDM信道估计; 均衡算法; 误码率; Matlab仿真,深度OFDM信道估算均衡算法的误码率仿真 在通信领域中,正交频分复用(OFDM)技术因其在宽带无线通信中的高效性和抵抗多径效应的出色性能而被广泛应用。然而,由于多径传播,OFDM系统在实际应用中会遇到信道估计和均衡的问题,这些问题会严重影响信号的接收质量。随着人工智能特别是深度学习技术的发展,研究者们开始探索如何利用深度学习的方法来解决OFDM系统中的信道估计和均衡问题。 深度学习方法因其强大的特征提取和模式识别能力,在处理复杂的非线性问题方面显示出巨大的优势。在信道估计领域,深度学习可以通过学习大量的信道数据来预测和估计信道的特性,这比传统的基于导频的信道估计方法更加灵活和高效。此外,利用深度学习方法进行均衡算法的设计,可以更准确地消除信道干扰,提高数据传输的准确性和速率。 在进行仿真研究时,Matlab软件因其强大的数学计算和算法仿真能力而成为通信领域研究者的首选工具。通过Matlab仿真,研究者可以构建OFDM系统的信道模型,设计深度学习算法,并分析算法对系统性能的影响,尤其是在误码率方面的影响。误码率是衡量通信系统质量的重要指标,它直接关系到通信系统能否可靠地传输数据。因此,对于基于深度学习的OFDM信道估计与均衡算法的研究来说,误码率的分析是非常关键的。 本次研究的主要内容包括:深入分析OFDM系统的工作原理和信道估计与均衡的挑战;探讨深度学习在信道估计与均衡中的应用方法;基于Matlab实现相关算法的仿真设计;评估不同深度学习模型对误码率的影响,并提出改进方案。研究的最终目的是提出一种有效的信道估计和均衡算法,通过深度学习方法降低OFDM系统的误码率,从而提高通信系统的整体性能。 为了进行这项研究,研究者们准备了多篇文档和报告,记录了从理论研究到仿真设计,再到结果分析的整个过程。这些文档详细描述了算法设计的具体步骤,仿真环境的搭建,以及仿真结果的解读。此外,相关的图片文件为研究提供了直观的展示,辅助理解仿真结果和算法效果。文本文件则包含了研究过程中的关键讨论点和一些初步的研究成果。 这项研究的开展不仅能够推动OFDM技术的发展,还能为通信系统设计提供新的思路,特别是在如何利用深度学习技术优化传统通信算法,以适应日益增长的数据传输需求。通过这种方法,未来通信系统可能会实现更高的数据传输速率,更低的误码率,以及更强的环境适应能力。 由于研究涉及大量的数据处理和算法设计,研究者需要具备深厚的通信原理知识,同时也要对深度学习理论和Matlab仿真工具有着丰富的操作经验。因此,这项研究不仅是技术上的挑战,也是对研究者多学科知识和技能的考验。通过不断的努力和探索,研究者有望找到降低OFDM系统误码率的有效方法,为现代通信系统的发展贡献新的力量。
2025-04-27 01:50:27 577KB
1
内容概要:本文详细介绍了利用自适应遗忘因子递推最小二乘法(AFFRLS)和扩展卡尔曼滤波(EKF)进行锂电池参数和荷电状态(SOC)联合估计的方法。首先介绍了一阶RC模型作为电池的等效电路模型,接着阐述了AFFRLS中自适应遗忘因子的作用以及其实现细节,然后讲解了EKF在非线性环境下的应用,特别是在SOC估计中的具体步骤。最后讨论了两种算法的联合使用策略,包括参数和状态的双时间尺度更新机制,并提供了具体的MATLAB代码实现。 适合人群:从事电池管理系统的研发人员、对电池状态估计感兴趣的科研工作者和技术爱好者。 使用场景及目标:适用于需要精确估计锂电池参数和SOC的应用场合,如电动汽车、储能系统等。主要目标是提高SOC估计的准确性,减少误差,确保电池的安全性和可靠性。 其他说明:文中提到多个注意事项,如OCV-SOC曲线的构建、初始参数的选择、协方差矩阵的初始化等。此外,还提供了一些调参经验和常见问题的解决方案,帮助读者更好地理解和应用这些算法。
2025-04-23 17:19:08 1.06MB
1
多元线性回归的参数估计,介绍多元线性回归的参数估计
2025-04-19 10:11:32 448KB 多元线性回归的参数估计
1
信号检测与估计是通信工程和电子工程领域中的核心课程,主要研究如何在噪声环境中识别和量化信号的存在,以及如何对信号进行准确的参数估计。这一领域的理论和技术对于理解和设计现代通信系统至关重要,如无线通信、雷达探测、图像处理等。 在“信号检测与估计”的课程中,通常会涵盖以下几个关键知识点: 1. **随机过程和噪声模型**:学习者首先要理解随机变量和随机过程的基本概念,包括高斯噪声、白噪声、有色噪声等常见噪声类型及其特性。这为后续的信号分析和处理奠定了基础。 2. **检测理论**:这一部分主要涉及如何判断一个信号是否存在,通常通过比较观测数据与假设的噪声背景来实现。关键概念包括似然比检验、贝叶斯决策理论以及阈值检测等。例如,奈奎斯特定理在信号检测中的应用,它定义了在给定信噪比下,检测信号的最佳阈值。 3. **估计理论**:一旦确定信号存在,接下来就是估计其参数,如频率、幅度、相位等。常见的估计方法有矩估计、最大似然估计、最小二乘估计等。最大似然估计尤其重要,因为它在无先验信息时通常提供最佳性能。 4. **匹配滤波器**:匹配滤波器是信号检测中的一个重要工具,它能最大化输入信号的能量,从而提高检测性能。匹配滤波器的设计通常基于已知的信号模型。 5. **卡尔曼滤波**:在处理动态系统的估计问题时,卡尔曼滤波器是一种高效的方法。它是一种递归的估计算法,适用于线性高斯系统,但在非线性系统中也有扩展形式,如扩展卡尔曼滤波和粒子滤波。 6. **谱分析**:包括傅立叶变换、拉普拉斯变换和小波分析等,用于将时域信号转换到频域,以便更好地分析信号的频谱特性,这对于检测和识别不同频率成分的信号至关重要。 7. **优化方法**:在估计信号参数时,常常需要解决优化问题。梯度下降法、牛顿法和遗传算法等是常见的优化手段。 课件“20100928142454(1).rar”、“课件3.rar”和“课件2.rar”可能包含这些主题的详细讲解和例题,而“信号检测与估计专题讲座2.rar”则可能是对某一特定话题的深入探讨,比如特定的检测技术或复杂的估计策略。通过深入学习这些课件,通信学院的学生可以系统地掌握信号检测与估计的基本理论和实际应用技巧,为未来在通信、雷达或相关领域的职业生涯打下坚实的基础。
2025-04-18 15:43:36 32.83MB 信号检测与估计
1
Mode LastWriteTime Length Name ---- ------------- ------ ---- -a---- 2020/3/9 12:03 753648 信号检测与估值2.pdf -a---- 2020/3/9 12:06 1828937 信号检测与估值2.pptx -a---- 2020/4/26 10:31 989626 信号检测与估值6.pdf -a---- 2020/3/4 14:34 722998 信号检测与估值L2.pdf -a---- 2020/3/16 10:26 1079179 信号检测与估值L3.pdf -a---- 2020/4/13 10:31 381236 信号检测与估值L4.pdf -a---- 2020/5/19 15:33 824586 信号检测与估值L5(update).pdf -a---- 2020/4/13 10:31 552662 信号检测与估值L5.pdf -a---- 2020/4/13 10:31 584747 信号检测与估值L6.pdf -a---- 2020/4/13 10:31 458186 信号检测与估值L7.pdf -a---- 2020/5/19 15:33 950091 信号检测与估值L8-update.pdf -a---- 2020/4/19 23:43 948653 信号检测与估值L8.pdf -a---- 2020/5/30 22:09 463511 信号检测与估值L9.pdf -a---- 2020/3/4 14:34 754804 信号检测与估值_L1.pdf -a---- 2020/3/4 14:34 17780466 信号检测与估计 第3版_12975000.pdf -a---- 2020/6/26 20:31 27469176 课件.zip
2025-04-18 15:30:07 26.2MB 信号检测与估计 信息工程学院
1