内容概要:本文详细介绍了永磁同步电机在全速域范围内实现无位置传感器控制的具体策略和技术细节。针对不同的速度区间,提出了三种主要控制方法:零低速域采用高频方波注入法,中高速域采用改进的滑膜观测器(使用sigmoid函数和平滑锁相环),以及在转速切换区域采用加权切换法。文中不仅提供了理论解释,还给出了具体的实现代码片段和注意事项。 适合人群:从事电机控制系统设计的研发工程师、高校相关专业师生及对电机控制感兴趣的高级技术人员。 使用场景及目标:适用于需要深入了解并掌握永磁同步电机无位置传感器控制技术的研究人员和开发者。目标是在实际应用中能够灵活运用这些控制策略,优化电机性能。 其他说明:文中提到的技术难点包括高频注入时的电流环带宽设置、滑膜观测器中sigmoid函数斜率参数的选择以及切换区可能遇到的相位跳变等问题。同时提供了一些实用的调试技巧和参考文献供进一步学习。
2025-09-12 17:06:13 2.32MB
1
应变电阻式压力传感器同时测压力与温度,分析了温度引起的误差。
2025-09-10 17:04:55 334KB 压力传感器
1
针对传统磁通门信号处理电路中模拟元件的缺点,设计一种基于现场可编程门阵列(FPGA)的数字磁通门系统。整个系统采用闭环结构,由激励产生模块、信号处理拱块和负反馈模块组成。外围模拟电路用高速D/A、A/D芯片取代,有利于系统温度稳定性的提到。FPGA内的数字逻辑实现了磁通门信号解算、激励正弦信号发生、D/A、A/D输入/输出串并转换的功能,首先用硬件描述语言(HDL)设计并仿真,然后下载、配置到FPGA中,调试完成后进行实验,通过实时处理双铁芯磁通门传感器探头输出信号对系统进行测试。实验结果证实了系统功能的正确性。闭环结构的采用提高了系统信号梯度线性度,与模拟系统相比,基于数字逻辑的设计温度性能更稳定,更易于小型化,可移植性更强。 《基于FPGA的数字磁通门传感器系统设计与实现》 磁通门传感器,作为一种高灵敏度和可靠性的弱磁检测设备,自1935年问世以来,已在多个领域广泛应用,包括航空、航天、地质勘探和医疗卫生等。它利用双铁芯结构,通过改变磁导率将被测磁场调制成激励信号的偶次谐波,然后通过信号处理系统提取相关信息,转换为直流信号输出。 传统的磁通门信号处理电路依赖于模拟元件,这导致其温度稳定性较差,难以小型化,且移植性低。为解决这些问题,本文提出了一种基于现场可编程门阵列(FPGA)的数字磁通门系统。FPGA因其灵活的可编程性,成为实现高效、稳定和可移植的磁通门系统的关键。 该系统采用闭环结构,由激励产生模块、信号处理模块和负反馈模块组成。激励产生模块由FPGA内的数字逻辑生成正弦激励信号,通过高速D/A转换器输出。信号处理模块则由高速A/D转换器采集磁通门传感器探头的输出信号,经过相敏整流和低通滤波,提取出直流信号。负反馈模块则通过积分放大、D/A转换器及反馈网络,实现对探头补偿线圈的反馈,以实现磁场的精确测量。 FPGA在此系统中的作用至关重要,它不仅能够实现信号处理的各种逻辑功能,还能够通过硬件描述语言(HDL)进行设计和仿真,然后下载配置到FPGA中,进行实时处理。在实验验证中,该系统成功处理了双铁芯磁通门传感器探头的输出信号,实验结果表明系统功能正确,具有较高的信号梯度线性度。 相比于模拟系统,基于FPGA的数字设计显著提高了温度稳定性,并降低了对外部环境的敏感性,使得系统更易小型化,移植性更强。这一创新设计对于提升磁通门传感器的性能和应用范围具有重要意义,特别是在需要稳定性和便携性的场合,例如在极端环境条件下的磁场测量。 基于FPGA的数字磁通门系统设计和实现,通过集成化的数字逻辑处理,克服了传统模拟电路的局限性,实现了更精确、稳定的磁场测量,为磁通门技术在现代科技领域的应用开辟了新的可能。
2025-09-10 16:41:26 188KB FPGA
1
《传感器与检测技术》是高等教育领域的一门重要课程,它主要研究如何利用各种传感器来获取、处理和分析物理量或化学量的信息。该课程的第四版由胡向东教授编著,旨在提供最新的传感器技术和检测方法的全面理解。课件内容通常涵盖了理论知识、实践应用和技术发展,对于学习者深入理解这一领域具有极大的帮助。 传感器是现代科技中的关键组件,它们广泛应用于自动化、机器人、航空航天、医疗、环境监测等多个领域。《传感器与检测技术》课程会讲解传感器的基本工作原理,如热电偶、压阻、电容、光电和磁敏传感器等。这些传感器分别对应温度、压力、电阻、光强和磁场等物理参数的测量。同时,课程还会涉及传感器的信号调理电路,包括放大器、滤波器和模数转换器等,这些都是将传感器输出的微弱信号转化为可处理的数字信号所必需的。 检测技术则是传感器应用的重要组成部分,它涉及到数据采集、处理和分析。课程中可能涵盖误差分析、信号处理算法,以及如何选择合适的检测系统以满足特定应用的需求。例如,精密测量中需要考虑噪声、漂移和稳定性等问题,而实时监控则可能要求快速响应和高可靠性。 胡向东教授的课件很可能包含了丰富的实例和案例研究,以帮助学生理解和掌握实际应用中的传感器选择和设计。此外,可能还会有实验部分,让学生亲手操作和实践,加深对理论知识的理解。例如,通过设计一个简单的温度监测系统,学生可以学习到如何选择适合的温度传感器,如何搭建信号调理电路,以及如何实现数据的采集和处理。 在《传感器与检测技术》这门课程的学习中,学生不仅会掌握各种传感器的工作机制,还会了解到传感器技术的最新发展,如微电子机械系统(MEMS)、无线传感器网络(WSN)以及智能传感器等前沿技术。这些知识对于未来从事工程设计、科研工作或是解决实际问题都至关重要。 《传感器与检测技术》是一门深入探讨信息感知和处理的课程,通过胡向东教授的课件,学习者不仅可以系统地学习到传感器的基本理论,还能了解到这一领域的最新进展,从而提升自身的专业技能和创新能力。
2025-09-06 09:45:08 62.26MB
1
基于高阶滑模观测器(HSMO)的永磁同步电机(PMSM)无位置传感器速度控制仿真方法。首先简述了PMSM的特点及其对位置传感器的需求,接着引出了高阶滑模观测器作为解决方案。文中通过具体案例和仿真实验,展示了HSMO在PMSM控制系统中的应用效果,特别是在应对外部干扰时的表现。实验结果显示,该方法能够在不同速度下提供稳定的转子位置和速度估计,实现了精确的速度控制。最后讨论了该方法的优势与面临的挑战,如参数优化和与其他控制策略的结合。 适合人群:从事电机控制、自动化工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解PMSM无位置传感器控制技术和高阶滑模观测器应用的研究人员,以及希望通过仿真验证新技术可行性的工程师。 其他说明:文中还附带了一段MATLAB代码示例,帮助读者更好地理解和实现HSMO在PMSM控制中的应用。
2025-09-02 09:39:10 1.13MB
1
内置式永磁同步电机(IPMSM)的无位置传感器控制技术是电力电子与电力传动领域的一项重要研究课题,它主要关注的是如何在不使用位置传感器的情况下实现电机的高精度、高效和可靠的运行。这种技术的应用可以显著降低系统成本并提高系统的可靠性。永磁同步电机因其效率高、功率密度大、易于弱磁扩速等优点,在工业、航天、交通和家用电器等多个传动领域得到了广泛的应用。 然而,在全速度范围内实现IPMSM的无位置传感器控制技术仍然存在一些核心技术难点。例如,在低速高频注入法中,滤波环节限制了系统的动态性能;模型法中存在位置误差脉动问题;逆变器非线性问题导致转矩(电流)脉动;在低载波比运行条件下,控制器和位置观测器的稳定性难以保证。这些问题的存在严重制约了无位置传感器控制技术的应用范围和效果。 为了克服这些技术难点,相关的研究集中在开发新的控制算法和策略。例如,针对低速/零速运行的永磁同步电机,研究人员提出了一种无滤波器的载波分离策略,通过分析注入方波电压信号和高频响应电流时序,调整转速观测值获取方式,提高系统动态带宽。此外,为了解决逆变器非线性和磁场空间谐波带来的定子电流及反电动势谐波问题,学者们提出了一种基于自适应线性神经元滤波的改进有效磁链模型转子位置观测方法。该方法能够滤除指定的谐波分量,提高转子位置观测的准确性。 研究还关注了如何利用磁饱和效应,通过施加方向相反的d轴电流偏置给定,比较d轴高频电流响应幅值大小实现磁极极性辨识。该方法具有较快的收敛速度,能够在电机转子静止或自由运行状态下实现初始位置辨识。此外,针对逆变器非线性效应导致的转矩(电流)和转速脉动问题,学者们提出了一种基于双自适应矢量滤波器交叉反馈网络的死区补偿策略,以此减少误差电压带来的影响。 在所有这些研究中,重要的是要考虑到系统的稳定性和可靠性,以及控制系统的鲁棒性。无位置传感器控制技术的研究成果,使得IPMSM电机能够在更宽的调速范围内实现高精度控制,这对于推动电力电子技术在工业控制中的应用具有重要意义。 无位置传感器控制技术的研究是一个多学科交叉的领域,它结合了电力电子、控制理论、信号处理等多个学科的知识。未来的研究将会更加深入,以期解决现有的技术难点,进一步拓展无位置传感器技术在IPMSM电机中的应用。
2025-08-31 21:20:57 10.59MB
1
在IT行业中,打印机是不可或缺的设备,特别是在办公环境中。标题提到的“LQ-675KT 680KII 690K 106KF 进纸传感器复位调整软件”针对的是爱普生(Epson)公司生产的几种针式打印机型号。这些打印机主要用于发票打印、报表输出等需求,因为它们能提供清晰的针打效果和持久的打印头寿命。 进纸传感器是打印机的重要组成部分,它的主要职责是检测纸张的存在和位置,从而确保打印机正确地进行打印操作。如果进纸传感器出现问题,可能会导致打印机无法正常识别纸张,从而出现不进纸、打印错误等问题。在这种情况下,"复位调整软件"就显得尤为重要,它能够帮助用户解决由于传感器故障或设置不当引起的进纸问题。 描述中提到的“详细方法”意味着这个软件不仅仅是一个工具,还包含了操作指南,以指导用户如何进行有效的传感器复位和调整。这对于非专业人员来说,是一个非常实用的资源,可以避免因为对硬件的直接干预而可能造成的损坏。 标签中的“嵌入式”可能指的是该软件是为特定打印机硬件设计的,内置于打印机的操作系统或者作为固件的一部分,它可能需要通过串口、USB接口或其他通信方式与打印机进行交互。“软件/插件”标签则暗示了这是一个可以安装在主机计算机上的程序,以辅助控制和诊断打印机。“复位”标签表明软件的主要功能是恢复传感器到出厂设置,消除错误状态,或者重新校准其灵敏度。 压缩包内的文件名称列表提供了更多关于如何解决问题的线索: 1. "不进纸的调整图解.doc" - 这可能是一个包含图文并茂的教程文档,详细解释了当打印机遇到不进纸问题时,如何根据图解步骤进行手动调整。 2. "新建文本文档.txt" - 虽然名字看起来像是一个空白文档,但它可能包含了一些简短的说明、提示或者使用软件的注意事项。 3. "LQ-680KII 690K调整软件.zip" - 这是实际的软件包,用于680KII和690K型号的打印机。用户需要解压后运行其中的程序,按照软件界面的指引来完成传感器的复位和调整。 这个压缩包提供的是一套完整的解决方案,涵盖了从软件到操作指南的全套流程,旨在帮助用户解决LQ-675KT、680KII、690K和106KF系列打印机的进纸传感器问题。对于遇到此类问题的用户来说,这是一个宝贵的资源,能够有效地提高打印机的工作效率和减少维护成本。
2025-08-29 14:15:29 2.09MB
1
背景内容介绍 公司120x10t/a重油催化制稀烃装置主要包括以下机组:主风机组、备用主风机组、富气压缩机组、增压机组。其中除增压机组外其它机组均成套配有一定数量的轴振动、位移、转速、键相等类型的轴系仪表。石化企业的生产流程中,旋转机械作为装置的关键设备,往往占据着心脏的主导地,对企业的稳定生产起到至关重要的作用,其高温、高压、易燃、易爆的特点更是对过程控制专业提出了更高的要求。旋转机械在石化工业生产中主要是指各种机泵;以压缩机和大型物料泵为主。在高速旋转机械和往复式运动机械的状态分析中,主要是获取其核心—转轴的运行参数,如轴振动、轴向位移、轴承(瓦)温度、转子振动和偏心、与机壳涨差以及转速等,对诸如轴的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。状态监测系统就是用各种仪表对这些参数进行测量和监视,从而了解其运行状态。 由于电涡流传感测量系统广泛应用于石化行业,而且我们公司的机组使用了本特利内华达的电涡流传感测量系统3300系列。 本项目轴系仪表要求采用框架式结构。各机组应独立设置,共3个框架。每个机架的电源、CPU等均要求独立配置。轴系仪表
1
**HC32M140系列风机无传感器控制方案** 华大半导体的HC32M140系列风机无传感器控制方案是针对电机驱动技术的一种先进应用,它采用了电压采样换相技术,实现了无传感器的磁场定向控制(FOC,Field Oriented Control)。这种控制方法在电机驱动领域具有较高的效率和精度,尤其适用于需要高动态响应和低噪声的风机应用。 **无传感器FOC技术** 无传感器FOC是一种不需要额外霍尔效应传感器的电机控制策略,它通过精确计算电机的磁通位置来实现对电机磁场的实时控制。在HC32M140系列芯片中,这一功能通过集成的高性能处理器和算法实现。无传感器技术降低了系统成本,同时提高了系统的可靠性和稳定性。 **电压采样换相** 电压采样换相是无传感器FOC中的关键步骤,它通过监测电机绕组的电压变化来确定电机的相位信息。在每个换相点,控制器会根据电压信号调整逆变器的开关状态,确保电机的连续平稳运行。这种方法对于提高电机效率和降低噪声至关重要。 **HC32M140微控制器** HC32M140是华大半导体推出的一款针对电机控制优化的微控制器,集成了强大的CPU内核、丰富的外设接口以及专为电机控制设计的功能模块。其特点包括高速运算能力、低功耗模式、多种电机控制算法支持等,为风机无传感器控制提供了硬件基础。 **电机控制算法** 该方案中可能采用了基于电流和电压估计算法,如滑模观测器或自适应算法,用于实时估算电机的磁链位置。这些算法能够在没有传感器的情况下,准确跟踪电机的状态,从而实现精确的FOC控制。 **用户手册内容** 《HC32M140系列风机无传感器控制方案用户手册Rev1.0》应包含以下内容: 1. 微控制器HC32M140的详细介绍,包括硬件特性、性能指标和内部结构。 2. 无传感器FOC控制原理和实现方法,包括电压采样换相的详细步骤。 3. 控制算法的说明,如何利用芯片内置资源进行电机状态估计。 4. 应用电路设计指南,包括电机接口、电源管理、保护机制等。 5. 示例代码和开发工具的使用说明,帮助用户快速上手开发。 6. 故障排查和问题解决的建议,提升用户在实际应用中的体验。 HC32M140系列风机无传感器控制方案通过先进的控制算法和微控制器,为风机应用提供了高效、可靠的解决方案,是现代电机驱动技术的一个优秀实例。用户手册则为开发者提供了详细的技术指导,有助于实现高效且精准的电机控制系统。
2025-08-24 17:22:15 4.25MB 无传感器
1
内容概要:本文详细介绍了永磁同步电机(PMSM)全速度切换无位置传感器控制技术。针对不同速度区间采用了不同的控制策略,包括高速段的超螺旋滑模控制和低速段的脉振高频方波注入。为了实现平滑的速度切换,提出了加权切换和双坐标切换两种策略。此外,还讨论了高速反电动势无感技术和量产方案的具体实施细节,涵盖硬件电路设计、软件算法优化等方面。通过仿真模型验证了该方案的有效性,并展示了其在实际应用中的优越性能。 适合人群:电机控制领域的研究人员、工程师和技术爱好者,尤其是对永磁同步电机无位置传感器控制技术感兴趣的人群。 使用场景及目标:适用于需要高性能、低成本、高可靠性电机控制系统的设计和开发,特别是工业自动化、电动汽车等领域。目标是提供一种成熟可靠的全速度切换无位置传感器控制方案,以满足各种复杂工况的需求。 其他说明:文中不仅提供了理论分析,还有具体的代码示例和实践经验分享,有助于读者更好地理解和应用相关技术。同时强调了在实际工程中需要注意的问题,如电磁兼容性、参数优化等。
2025-08-21 17:04:19 573KB
1