直接给出Galileo E1 OS 频段的B路和C路的存储码,以卫星SV1为例给出了4092个二进制码。另外给出了Galileo 的接口控制文件。
2026-02-09 10:37:20 3.38MB galileo
1
内容概要:本文档围绕四旋翼飞行器的控制、路径规划与轨迹优化展开,基于Matlab平台提供了完整的仿真与代码实现方案。内容涵【无人机】四旋翼飞行器控制、路径规划和轨迹优化(Matlab实现)盖无人机的动力学建模、控制系统设计(如PID、MPC、深度强化学习等)、三维路径规划算法(如A*、遗传算法、多目标粒子群优化NMOPSO)以及轨迹优化方法,尤其关注复杂威胁环境下的多无人机协同路径规划策略。文档还整合了多种智能优化算法与先进控制理论的应用案例,展示了无人机技术在科研仿真中的系统性解决方案。; 适合人群:具备一定Matlab编程基础,从事无人机控制、路径规划、智能优化算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握四旋翼无人机的建模与控制实现方法;②学习基于智能算法的三维路径规划与轨迹优化技术;③实现多无人机协同任务中的路径协同与避障策略;④为科研项目、毕业设计或工程仿真提供可复用的代码框架与技术参考。; 阅读建议:建议结合文档中的代码实例与理论说明逐步实践,重点关注算法实现细节与Matlab仿真模块的搭建,同时可参考文中提供的网盘资源获取完整代码与模型,提升科研效率与系统设计能力。
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 在万物互联的时代,信息安全已成为数字化进程中的关键基石。从金融交易到医疗数据,从企业机密到个人隐私,每一次数据流转都面临着潜在的安全风险。本文聚焦计算机信息安全核心技术,揭示黑客攻击的常见手法与防范策略。通过行业洞察与技术前瞻,帮助读者理解信息安全的底层逻辑,掌握实用的安全防护技巧。让我们共同提升安全意识,用技术为数字生活保驾护航。
2026-02-05 11:33:58 4.64MB 计算机信息安全
1
六轴机械臂时间能量冲击最优轨迹规划与Pareto最优解集图的深度探究:轨迹优化支持不同阶数扩展与多目标轨迹规划应用研究,六轴机械臂时间能量冲击最优轨迹规划与Pareto最优解集图的动态规划研究——基于NURBS技术的轨迹优化方案探索,六轴机械臂时间能量冲击最优轨迹规划 轨迹优化 支持最高7次NURBS 默认7次 可修改成其他阶数 扩展性强 可出 关节位置 关节速度 关节加速度图 pareto最优解集图 可复现浙大机械手多目标轨迹规划lunwen 收敛速度快 ,六轴机械臂; 时间能量; 冲击; 最优轨迹规划; 轨迹优化; NURBS阶数; 扩展性强; 关节位置; 关节速度; Pareto最优解集图; 多目标轨迹规划; 收敛速度快,六轴机械臂轨迹规划优化:高效、可扩展的NURBS算法研究
2026-02-05 10:32:11 3.25MB edge
1
内容概要:本文探讨了利用ANSYS Maxwell和Workbench对永磁直线电机进行多目标尺寸优化的方法和技术。文中详细介绍了如何通过参数化建模、多参数联动优化以及选择合适的优化算法来提高电机性能并降低成本。具体案例展示了通过响应面优化模块和遗传算法(如NSGA-II),可以在较少的样本点下实现高效的多目标优化。此外,还提到了一些实用技巧,如使用关联表达式避免结构干涉、合理设置种群规模以节省计算资源,以及通过Python脚本自动化提取和可视化优化结果。 适合人群:从事电机设计与优化的研究人员、工程师,特别是那些希望深入了解多目标优化方法及其应用的人。 使用场景及目标:适用于需要对永磁直线电机进行综合性能优化的实际项目,旨在提高电机效率、降低能耗和成本。目标是在多个相互制约的目标间找到最佳平衡点,如推力波动、铜耗和制造成本。 阅读建议:读者可以通过本文了解如何将理论知识应用于实际工程问题,掌握具体的工具和方法,从而更好地解决复杂的电机设计挑战。
2026-02-04 19:12:59 758KB
1
内容概要:本文深入探讨了FPGA(现场可编程门阵列)在图像缩放中的应用,重点介绍了双线性插值算法的实现方式。首先简述了FPGA在图像处理领域的优势,如高并行性和可定制性。接着详细解释了图像缩放代码的两大部分——算法实现和硬件描述语言(HDL)编写。文中给出了一段用Verilog HDL编写的简单图像缩放模块代码示例,展示了输入输出图像数据的定义及基本处理流程。进一步讨论了双线性插值算法在FPGA上的具体实现细节,强调了并行计算和数据交换的优化方法。最后推荐了一些参考资料和技术交流平台,帮助读者更好地理解和掌握这项技术。 适合人群:对FPGA和图像处理感兴趣的电子工程技术人员、科研工作者及高校师生。 使用场景及目标:适用于希望深入了解FPGA图像处理机制的人群,特别是想要掌握图像缩放算法实现及优化技巧的学习者。目标是使读者能够独立完成基于FPGA的图像缩放项目。 其他说明:文中提供的代码仅为示例,实际应用中还需根据具体需求调整参数设置和优化策略。
2026-02-03 16:26:35 838KB
1
遗传算法在计算机流体动力学中用于多目标优化 这是莱昂大学(University of Leon)为航空航天工程学士学位而开发的高级论文。 但是,这个项目是在佛蒙特大学的交流计划期间完成的。 本文的主要目的是将诸如遗传算法(GA)等超启发式优化方法与具有多目标(MO)的计算机流体动力学(CFD)模拟的航空航天案例相结合。 作者: 哈维尔·洛巴托·佩雷斯(Javier Lobato Perez) 顾问: 伊夫·达比夫(Yves Dubief)和拉斐尔·桑塔马里亚(Rafael Santamaria) 机构: 佛蒙特大学-机械工程系 该项目需要某些软件在计算机上才能正常运行。 必备条件是python (使用的版本为3.6.1 )(使用jupyter notebook或jupyter lab执行笔记本并了解该过程的基本知识), OpenFOAM (使用5.00版)和paraView (
2026-02-03 11:28:10 92.99MB genetic-algorithm
1
《遗传算法在飞机设计中的应用:GA-airplane-designer程序详解》 在现代航空工业中,飞机设计是一项复杂且精密的工作,涉及到空气动力学、结构工程、材料科学等多个领域的知识。近年来,随着计算机技术的发展,一种名为遗传算法(Genetic Algorithm, GA)的优化方法被广泛应用到飞机设计领域,大大提升了设计效率和设计质量。本文将详细解析一款名为"GA-airplane-designer"的程序,该程序利用遗传算法进行飞机设计优化。 遗传算法是受生物进化过程启发的一种全局优化算法,它模拟了自然界中的物种进化过程,包括选择、交叉和变异等操作。在"GA-airplane-designer"程序中,遗传算法被用来解决飞机设计中的多目标优化问题,例如最小化阻力、最大化升力、优化燃油效率等。 我们来看程序的输入部分。"GA-airplane-designer"接受一系列可能的发动机模型、翼型数据以及飞机几何形状参数作为初始种群。这些数据可以来源于现有的飞机设计或由用户自定义,提供了设计的多样性和灵活性。发动机模型通常包括推力、燃油消耗率等关键性能指标;翼型数据则涉及翼展、翼厚、翼弦等参数,影响飞机的气动特性;几何形状参数如机身长度、机翼位置等决定了飞机的整体布局。 接下来是遗传算法的核心步骤。适应度函数是衡量设计方案优劣的关键,它根据飞机设计的目标来评估每个个体(即一套设计方案)。在这个程序中,适应度函数可能包括了阻力、升力、重量、燃油效率等多个因素的综合评价。通过迭代优化,遗传算法不断筛选出性能更优的方案,并通过交叉和变异操作生成新的设计组合,逐步逼近全局最优解。 "GA-airplane-designer"的实现语言为Python,这使得它具有良好的可读性、易扩展性和跨平台性。Python丰富的库资源,如NumPy用于数值计算,SciPy用于优化,以及matplotlib用于结果可视化,都为程序的开发提供了便利。 在"GA-airplane-designer-master"压缩包中,包含了程序的源代码、数据文件、说明文档等相关资源。用户可以通过阅读源代码了解遗传算法在飞机设计中的具体实现细节,也可以运行程序对特定的飞机设计问题进行求解。 "GA-airplane-designer"是一款利用遗传算法进行飞机设计优化的创新工具,它以Python为基础,融合了生物学的智慧与现代计算技术,为航空工程师提供了一种高效、灵活的解决方案。随着技术的不断发展,我们可以期待更多类似的工具出现,进一步推动航空设计领域的进步。
2026-02-03 11:27:42 28KB Python
1
本文介绍了基于梦境优化算法(DOA)的多无人机协同路径规划方法。DOA是一种新型元启发式算法,灵感来源于人类梦境中的记忆和遗忘过程,通过分组策略和不同阶段的搜索策略(勘探、开发、更新)平衡全局与局部搜索。文章详细阐述了DOA的算法原理、流程及数学模型,包括路径最优性、安全性约束(避障)、高度限制和平滑成本计算。同时提供了MATLAB代码实现,支持自定义无人机数量和起始点,适用于空中摄影、测绘等场景。该方法通过优化路径长度、威胁规避和飞行可行性,实现了多无人机的高效协同路径规划。 在无人机技术迅速发展的今天,无人机路径规划成为了研究的重点之一。本文介绍的基于梦境优化算法(DOA)的多无人机协同路径规划方法,是一种新型的路径规划策略。DOA算法源自人类梦境的特有机制,通过模拟梦境中的记忆与遗忘过程,实现对问题空间的高效搜索。该算法的流程包括勘探、开发和更新三个阶段,能够有效地平衡全局搜索与局部搜索,以此达到优化路径的目的。 文章对DOA算法的原理和数学模型进行了深入的探讨,包括算法的路径最优性分析、安全性约束(避障)、高度限制以及路径平滑的成本计算等关键部分。通过细致的分析和模拟,文章揭示了DOA算法在处理多无人机路径规划问题上的有效性和优越性。 文中不仅提供了详尽的理论阐述,还公布了相应的MATLAB代码实现,用户可以自定义无人机的数量以及起始点。这使得DOA算法具有很强的普适性和灵活性,能够适应于各种无人机应用场合,如空中摄影、遥感测绘等。 DOA算法在无人机路径规划上的应用,极大地优化了飞行路径,确保了路径的最优性和安全性,同时满足了无人机飞行的高度限制要求。算法在优化路径长度的同时,还考虑了威胁规避和飞行的可行性,从而实现了多无人机的高效协同。这不仅提高了无人机任务执行的效率,也增强了无人机在复杂环境下的操作安全性。 此外,由于DOA算法是元启发式算法中的一种,它对于其他类似优化问题也具有很好的借鉴和推广价值。通过实际的测试和应用,DOA算法证明了其在处理高复杂度优化问题上的高效性与实用性。因此,DOA算法在无人机路径规划领域有着广阔的应用前景,将对无人机技术的发展起到重要的推动作用。 值得注意的是,文章对于DOA算法的介绍和评价都是基于已经完成的学术研究和实验验证,不包含任何可能性或概率性的语句,完全基于事实和实验数据进行描述。
2026-01-28 15:48:07 1.27MB 智能优化算法 MATLAB
1
基于速度障碍法融合的改进动态窗口DWA算法:增强动态避障能力与轨迹平滑性,基于速度障碍法与改进评价函数的动态窗口DWA算法动态避障研究:地图适应性强且平滑性优化,改进动态窗口DWA算法动态避障。 融合速度障碍法躲避动态障碍物 1.增加障碍物搜索角 2.改进评价函数,优先选取角速度小的速度组合以增加轨迹的平滑性 3.融合速度障碍法(VO)增强避开动态障碍物的能力 地图大小,障碍物位置,速度,半径均可自由调节 有参考,代码matlab ,改进DWA算法; 动态避障; 融合速度障碍法; 轨迹平滑性; 自由调节参数; MATLAB代码。,优化DWA算法:融合速度障碍法实现动态避障与轨迹平滑
2026-01-27 10:04:39 140KB ajax
1