内容概要:详细演示了使用 Python 中的 LSTM 和 XGBoost 结合来创建股票价格预测模型的方法。该示例介绍了从数据提取到模型优化全过程的操作,并最终通过图形比较预测值和真实值,展示模型的有效性,有助于提高金融投资决策水平和风险管理能力。本项目的亮点之一就是它融合 LSTM 捕获时间关系的强大能力和 XGBoost 在复杂特征之间的建模优势。 适用人群:有Python编程经验的人士以及金融市场投资者和技术分析师。 使用场景及目标:应用于金融市场的投资策略规划,特别是针对需要长期监控、短期交易决策的股票,用于辅助进行市场走势判断和交易决策支持。 额外信息:此外还包括对未来工作的改进建议:加入更多金融技术指标的考量以及使用更高级机器学习模型的可能性。
2024-10-23 13:27:07 41KB Python LSTM XGBoost 股票价格预测
1
算法实验使用sklearn完成。 代码内容包括: 1.特征相关性热力图 2.特征筛选 3.使用: 'k近邻', '逻辑回归', '神经网络', '决策树', 'SVC', '集成学习随机森林', '集成学习adaboost', '梯度提升树', 'Xgboost' 共9类分类算法实验以及测试的结果。
2024-05-26 14:04:02 524KB 数据挖掘 人工智能
5.9【阿里云天池】零基础入门数据价格:二手车交易价格预测 car-price-forecast-master
2024-05-23 20:32:01 9KB
1
本文主要对LSTM模型结构改进及优化其参数, 使其预测股票涨跌走势准确率明显提高, 同时对美股周数据及日数据在LSTM神经网络预测效果展开研究. 一方面通过分析对比两者预测效果差别, 验证不同数据集对预测效果的影响; 另一方面为LSTM股票预测研究提供数据集的选择建议, 以提高股票预测准确率. 本研究通过改进后的LSTM神经网络模型使用多序列股票预测方法来进行股票价格的涨跌趋势预测. 实验结果证实, 与日数据相比, 周数据的预测效果表现更优, 其中日数据的平均准确率为52.8%, 而周数据的平均准确率为58%, 使用周数据训练LSTM模型, 股票预测准确率更高.
1
python数据分析,因为股票价格的影响因素太多,通过k线数据预测未来的价格变化基本不可行,只有当天之内的数据还有一定的关联,故feature与target都选择的是当天的数据。 加载数据 为了加快数据的处理速度,提前将mariadb数据库中的数据查询出来,保存成feather格式的数据,以提高加载数据的速度。 经过处理,不同股票的数据保存在了不同的文件中,列名还保持着数据库中的字段名。我选择了股票代码为sh600010的这只股票作为数据分析的数据来源。预测出来的结果与真实值变化趋势相近,说明线性回归模型在一定程度上能够解释收盘价与选取的feature之间的关系
2024-04-10 10:35:59 342KB python 机器学习 数据集 股票预测
1
预测基于机器学习的时间序列价格预测
2024-01-09 10:34:58 6.04MB 机器学习
1
R语言数据分析报告:汽车风险价格预测分析
2023-12-21 21:10:44 1.13MB r语言 数据分析
1
采用LSTM神经网络,基于时间线可以实现数据的预测,包括股票价格随时间的变化预测、多地天气的温湿度数据的预测。本资源已经跑通,用户替换掉数据集data.csv等文件即可,简单易上手。
2023-12-12 10:00:33 1.02MB lstm 神经网络 价格预测 预测算法
1
基于Qt实现的股票分析预测软件,实现外排序功能,程序加载数据内存限制不超过30MB算法逻辑,创建索引,加快数据获取,根据股票的年月和代码进行k线图展示,热力图展示,相关系数计算,最后价格预测和股票价格曲线展示。对股票数据进行多个处理操作,包括外排序、创建索引、统计分析、价格预测和可视化展示。 基于X86架构的英特尔处理器,操作系统为Windows系统,而软件开发工具主要采用的是QTCreator。
2023-06-13 17:53:23 84.54MB qt 软件/插件 金融商贸 C++
1
资源包含文件:设计报告word+代码 股票价格预测详细介绍参考:https://biyezuopin.blog.csdn.net/article/details/122463596?spm=1001.2014.3001.5502
2023-05-16 15:49:51 1.03MB Python 循环神经网络 股票价格 价格预测