"超表面与超材料:CST仿真设计、材料选择与代码实现全解析",CST仿真 超表面 超表面,超材料 超表面CST设计仿真 超透镜(偏移聚焦,多点聚焦),涡旋波束,异常折射,透射反射编码分束,偏折,涡旋(偏折,分束,叠加),吸波器,极化转,电磁诱导透明,非对称传输,RCS等 材料:二氧化钒,石墨烯,狄拉克半金属钛酸锶,GST等 全套资料,录屏,案例等 聚焦代码,涡旋代码,聚焦透镜代码, CST-Matlab联合仿真代码,纯度计算代码 ,核心关键词: 1. 超表面; 超材料 2. CST仿真 3. 透射反射编码分束 4. 涡旋波束 5. 二氧化钒; 石墨烯; 狄拉克半金属钛酸锶 6. 聚焦代码; 联合仿真代码 7. 材料属性(纯度计算) 这些关键词一行中以分号隔开: 超表面;超材料;CST仿真;透射反射编码分束;涡旋波束;二氧化钒;石墨烯;狄拉克半金属钛酸锶;聚焦代码;联合仿真代码;材料属性(纯度计算) 希望符合您的要求。,《CST仿真与超表面技术:聚焦透镜与涡旋波束的全套资料与代码详解》
2025-08-25 15:30:53 757KB 数据仓库
1
上面的代码是一个简单的仓库管理系统,用于管理商品的添加、删除、显示和查找功能。这个系统基于C++语言编写,采用了面向对象的思想。 首先,在代码中定义了一个名为Item的结构体,用于表示每个商品的名称、价格和剩余数量。然后,使用一个指针数组inventory来存储所有商品的指针,以及一个变量numItems来跟踪当前仓库中商品的数量。 代码中的主要功能包括: 添加商品 (addItem):用户可以输入新商品的名称、价格和剩余数量,然后将该商品添加到仓库中。系统会检查仓库是否已满,如果满了则提示无法添加新商品。 删除商品 (removeItem):用户可以输入要删除的商品名称,系统会在仓库中查找该商品并删除。删除成功后会显示删除成功的消息,如果未找到该商品则提示未找到。 显示所有商品 (displayItems):系统会列出仓库中所有商品的名称、价格和剩余数量。如果仓库为空,则提示无商品可显示。 查找指定商品 (searchItem):用户可以输入要查找的商品名称,系统会在仓库中查找该商品并显示其详细信息。如果未找到该商品,则提示未找到。
2025-08-18 11:11:13 4KB
1
深入解析Geostudio非饱和渗流场导入至flac3d的技术细节:附完整代码及案例文件,Geostudio非饱和渗流场与flac3d的集成:代码与案例文件详解,Geostudio非饱和渗流场导入flac3d。 内容包括:代码和案例文件。 ,核心关键词:Geostudio; 非饱和渗流场; 导入; flac3d; 代码; 案例文件。,Geostudio渗流场至flac3d导入方法:代码与案例文件详解 在现代岩土工程及地学研究领域中,数值模拟已经成为不可或缺的工具,特别是在处理复杂的流固耦合问题时。Geostudio和flac3d是两个在土木工程、岩土力学和地质工程分析中广受应用的专业软件。Geostudio是一套集成的工程分析软件,包括了多个模块,用于分析地下水、环境问题、岩土工程等,而flac3d则是专门用于岩土力学分析的有限差分软件。将Geostudio中模拟的非饱和渗流场导入至flac3d进行进一步分析,是提高工程模拟精度和效率的有效方法之一。 在进行非饱和渗流场导入flac3d的技术细节解析之前,首先需要对Geostudio中的非饱和渗流场进行深入理解。非饱和渗流主要发生在地下水位以下的土壤或岩石中,涉及到水的毛细作用、吸附力以及重力等作用力。非饱和渗流场的模拟,需要考虑到材料的渗透特性、孔隙水压力的变化以及饱和度的分布等因素。 将非饱和渗流场导入至flac3d,关键在于两个软件之间的数据转换和接口问题。这通常需要将Geostudio中计算得到的渗流结果,比如压力场或水头分布等数据,导出为flac3d能够识别和利用的格式。在flac3d中,这些数据通常会以初始条件或边界条件的形式被应用,以便进行后续的力学分析。 本篇内容将提供完整的代码示例以及案例文件,旨在指导用户如何进行非饱和渗流场的模拟以及如何将模拟结果导入至flac3d。代码示例将会涉及到数据导出的脚本编写,以及如何在flac3d中加载和应用这些数据。案例文件则会具体展示如何在一个特定的工程背景下进行操作,包括了地质模型的建立、非饱和渗流场的模拟、数据导出以及flac3d的进一步分析等完整流程。 核心关键词“Geostudio”、“非饱和渗流场”、“导入”、“flac3d”、“代码”、“案例文件”不仅概括了文章的主要内容,也指出了本篇内容的应用范围和操作步骤。掌握这些关键词,将有助于用户更加精准地理解和应用这些工具和技术。 代码部分将为用户展示具体的编程语言实现,如Python脚本或其他支持语言,用于从Geostudio中提取数据并转换为flac3d所需的格式。案例文件则会结合具体的地质工程实例,通过步骤说明来展示整个导入过程。这些案例不仅仅局限于理论分析,更加注重实际应用,帮助工程师在实际项目中解决实际问题。 本篇内容致力于为工程师提供一套完整的操作指南,帮助他们有效地将Geostudio中的非饱和渗流场导入至flac3d,从而提升工程模拟的效率和质量。通过学习这些技术细节,工程师将能够在模拟中更好地处理流固耦合问题,为岩土工程的分析和设计提供更加准确的依据。
2025-08-18 00:01:45 1.12MB 数据仓库
1
### Hive数据仓库实战知识点详解 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,使得数据挖掘更加方便、快捷。它适用于处理大规模数据集,并且能够对海量数据进行存储、查询和分析。在社交应用陌陌的实际应用案例中,Hive数据仓库在处理和分析海量数据方面发挥着关键作用。 #### 数据存储与可靠性 Hive利用Hadoop的分布式存储系统存储海量数据,保证了数据的安全性和可靠性。其良好的扩展性使得存储资源能够随着数据量的增加而灵活扩展。这为处理如陌陌这样的社交平台每天产生的海量数据提供了坚实基础。 #### 数据处理与分析 通过HiveQL(Hive Query Language),可以对原始数据进行多种操作,包括数据筛选、聚合、关联等,使无序数据转化为有序、有价值的信息。这在陌陌中体现为通过分析用户的聊天记录和位置信息等,挖掘用户兴趣爱好和社交行为模式,并提供个性化推荐服务。 #### 数据分区与索引 Hive支持数据分区和索引,这些功能能够有效提升数据查询效率。对于高频访问的热点数据,Hive可以快速响应,为实时业务决策提供支持。在处理速度和查询效率方面,Hive能够满足社交应用对数据处理性能的高要求。 #### Hive数仓分层 在Hive数据仓库的实际应用中,通常会设计数据分层架构,比如ods(操作数据存储)、dw(数据仓库)、app(应用层)。每一层都有其独特的角色和作用,这有助于组织和优化数据处理流程。 - **ods层**:作为数据的入口层,通常用于存储从原始数据源导入的数据。 - **dw层**:为数据仓库层,用于存储经过清洗和转换后的数据,便于进行复杂的数据分析。 - **app层**:应用层,通常存储最终用户可以直接查询和使用的数据。 #### Hive数据仓库实战 通过具体代码示例,我们可以看到Hive数据仓库的使用方法。例如,创建数据表时,可以使用SQL语法对数据字段进行定义,并且进行一些初步的数据处理。通过创建查询表(CTAS),可以对ods层的数据进行转换,存储到dw层中,便于后续的数据分析。 #### 数据分析实例 在实战中,我们可以通过Hive进行多个维度的数据分析,例如: - 每日数据总量 - 每小时消息量趋势 - 按地区统计的发送消息总量 这些分析结果可以帮助优化用户体验,提升业务决策的准确性,增强社交平台的竞争力。 在对Hive数据仓库进行实战操作时,还可以结合可视化工具如Superset或FineBI,将分析结果以图形的方式展示,以便更直观地理解数据。 ### Seo
2025-08-05 16:52:22 1.89MB 大数据分析
1
基于二阶RC电池模型的在线参数辨识与实时验证研究——使用FFRLS算法及动态工况下的电芯性能评估,二阶RC电池模型参数在线辨识(BMS电池管理系统) 使用遗忘因子最小二乘法 FFRLS 对电池模型进行参数辨识,并利用辨识的参数进行端电压的实时验证,基于动态工况,电压误差不超过20mv,也可以用来与离线辨识做对比,效果见图 内容包含做电池Simulink模型、电芯数据、推导公式、参考lunwen 程序已经调试好,可直接运行,也可以替成自己的数据 ,二阶RC电池模型参数;在线辨识;BMS电池管理系统;遗忘因子最小二乘法(FFRLS);参数辨识;端电压实时验证;动态工况;电压误差;Simulink模型;电芯数据;推导公式;参考lunwen(文章);程序调试;数据替换。,基于FFRLS的二阶RC电池模型参数在线辨识与验证
2025-08-05 10:39:47 210KB 数据仓库
1
本文探讨了蚁群算法在自动化立体仓库拣选路径优化中的应用,旨在解决现有自动化立体仓库在优化管理和调度方面的不足。自动化立体仓库是现代企业物流系统中不可或缺的组成部分,其特点在于高效的空间利用率、快速的货物存取作业以及机械化、自动化的仓库操作。尽管其硬件设备、自动控制和通讯技术已经十分完善,但如何提高仓库的工作效率,尤其是在不增加额外设备投资的前提下,优化拣选路径成为了一个亟待解决的问题。 蚁群算法是一种模拟自然界蚂蚁觅食行为的启发式算法,它通过模拟蚂蚁在寻找食物路径过程中释放的信息素来实现对最短路径的搜索。算法中的蚂蚁个体在选择路径时会考虑信息素的浓度和路径的可见度。在蚁群算法中,每个路径上的信息素浓度会根据路径的好坏而进行相应的更新。通过不断地迭代搜索,算法最终能够寻找到接近最优解的路径。 文章中首先对自动化立体仓库的概念和特点进行了介绍,指出了其在存储量大、占地面积小、操作时间短、机械化自动化等方面的优势。同时,文章分析了自动化立体仓库在优化管理、调度方面所面临的挑战,并强调了优化拣选路径的重要性。 随后,文章详细介绍了蚁群算法的基本原理和数学模型,包括路径选择的随机转移概率公式、信息素的局部更新和全局更新机制。信息素局部更新机制确保蚂蚁在城市间转移时,能够根据路径信息素的浓度来调整转移概率,而全局更新机制则是在所有蚂蚁完成一次搜索后,仅对路径最短的蚂蚁留下的信息素进行加强。这种局部和全局信息素更新机制结合的方式,有利于算法更快地收敛至最优解。 在本文的研究中,蚁群算法被应用于固定货架堆垛机拣选路径的优化问题。利用Matlab软件编程求解堆垛机拣选货物的旅行商问题(TSP),并将蚁群算法应用于该问题中,以期找到最短的拣选路径。通过实验分析,蚁群算法相较于其他优化方法在自动化立体仓库拣选路径优化方面具有更高的效率和更好的应用前景。 蚁群算法在自动化立体仓库拣选路径优化中的应用,不仅能够提升拣选作业的效率和准确性,还能有效降低运营成本。通过将这一算法与自动化立体仓库的实际工作相结合,可以为仓库管理提供科学、高效的决策支持。未来,随着算法本身的进一步优化和硬件技术的不断发展,蚁群算法在自动化立体仓库中的应用前景将会更加广阔。
2025-08-04 01:12:35 225KB 首发论文
1
以自动化立体仓库拣选作业为研究对象,根据实际情况,分析自动化立体仓库拣选作业的工作特点: 巷道堆垛 机每次拣选作业只能对一个托盘进行操作;当巷道堆垛机运行到拣选作业区且货单物品被拣选后,巷道堆垛机将托盘送 回原货位。基于自动化立体仓库拣选作业的工作特点, 建立了以巷道堆垛机拣选作业运行时间最短为目标的数学模型, 最后采用蚁群算法进行优化求解, 得出最短运行时间, 实例证明该模型和算法是切实可行的, 能有效的提高立体仓库拣 选作业效率。 ### 基于蚁群算法的立体仓库拣选作业优化 #### 一、研究背景与意义 随着现代工业和物流业的发展,自动化立体仓库作为高效、精确存储与拣选物资的关键设施,在各种大型仓库和物流中心中发挥着越来越重要的作用。自动化立体仓库不仅能够大幅度提高仓库的空间利用率,还能显著提升拣选作业的效率与准确性。其中,拣选作业作为自动化立体仓库运作的核心环节之一,其效率直接影响到整体物流系统的性能。 #### 二、自动化立体仓库拣选作业特点 自动化立体仓库中的拣选作业主要通过巷道堆垛机完成。巷道堆垛机是一种能够在立体仓库的巷道内移动,并能够沿着垂直方向升降的设备,用于存取货物。其工作特点主要包括: 1. **单次操作限制**:巷道堆垛机每次拣选作业只能处理一个托盘,这意味着对于每一批拣选任务,都需要进行多次往返操作。 2. **托盘返回要求**:当巷道堆垛机运行至拣选作业区并将所需货物拣选完成后,还需要将空托盘送回原货位,以便后续使用。 这些特点决定了自动化立体仓库拣选作业的复杂性和挑战性。 #### 三、数学模型的建立 为了优化拣选作业的过程,研究者们通常会建立数学模型来模拟拣选过程,并以此为基础寻求最优解决方案。针对自动化立体仓库拣选作业的特点,可以建立以下数学模型: 1. **目标函数**:以巷道堆垛机的拣选作业运行时间为最小化目标。这涉及到计算巷道堆垛机在拣选过程中所需的总时间,包括寻找目标货位的时间、拣选货物的时间以及将托盘送回原位的时间。 2. **约束条件**:考虑到托盘的唯一性和巷道堆垛机的操作特性,模型还需要包含一系列约束条件,例如每个托盘只能被拣选一次、巷道堆垛机在同一时刻只能在一个货位操作等。 #### 四、蚁群算法的应用 蚁群算法(Ant Colony Optimization, ACO)是一种启发式的优化算法,灵感来源于蚂蚁寻找食物路径的行为。在自动化立体仓库拣选作业优化问题中,蚁群算法可以通过模拟蚂蚁在寻找最短路径过程中的信息素更新机制,来寻找最优或近似最优的拣选路径。 1. **算法原理**:蚁群算法通过模拟蚂蚁群体在寻找食物过程中释放的信息素来指导其他蚂蚁选择路径,从而实现路径的优化。 2. **应用步骤**: - 初始化参数,包括信息素浓度、蚂蚁数量等。 - 模拟蚂蚁在不同货位间的移动,根据信息素浓度和启发式信息确定下一个移动位置。 - 更新信息素浓度,强化优质路径上的信息素,减弱较差路径上的信息素。 - 重复以上过程直至满足终止条件,例如达到最大迭代次数或找到足够好的解决方案。 #### 五、案例验证与结果分析 通过对实际案例的应用验证,采用蚁群算法优化的拣选作业模型能够在较短时间内找到最优或近似最优的拣选路径,显著缩短了巷道堆垛机的运行时间,提高了拣选作业的整体效率。 #### 六、结论 基于蚁群算法的自动化立体仓库拣选作业优化方法,能够有效应对拣选作业中出现的各种复杂情况,通过合理的路径规划减少不必要的等待时间和移动距离,从而提高整个自动化立体仓库的运作效率。未来还可以进一步结合机器学习等先进技术,不断提升拣选作业的智能化水平。
2025-08-04 01:11:03 149KB 蚁群算法 立体仓库 拣选作业
1
遗传算法是一种模拟生物进化过程的搜索优化算法,它通过自然选择、遗传、变异等操作对解空间进行高效搜索,以寻找问题的最优解或近似最优解。在路径规划问题中,遗传算法能够有效地解决仓库拣货路径优化问题,其核心思想是在一组潜在的解决方案中,通过迭代选择、交叉和变异等操作,逐步优化路径,以减少拣货过程中的总移动距离,提高仓库作业效率。 仓库拣货路径优化问题是指在仓库管理中,如何设计一条路径使得拣货员或者机器人从起点出发,经过所有待拣货物点一次且仅一次后,返回终点,使得总移动距离最短。这是一个典型的组合优化问题,属于旅行商问题(TSP)的一种变体。由于仓库货物点多,路径选择复杂,传统的穷举搜索方法或简单启发式算法难以在有限的时间内得到最优解,因此遗传算法因其全局搜索能力和较快的收敛速度成为解决此类问题的重要手段。 使用遗传算法解决仓库拣货路径优化问题,通常包括以下几个关键步骤: 1. 初始化:随机生成一组初始解,构成初始种群。 2. 适应度评价:根据路径总距离,评价每个个体(解决方案)的优劣。 3. 选择操作:根据适应度值选择优秀的个体遗传到下一代,常用的有轮盘赌选择、锦标赛选择等。 4. 交叉操作:模拟生物的遗传过程,两个父代个体通过某种方式交换部分基因,产生子代,子代继承父代的优良特性。 5. 变异操作:为了维持种群的多样性,通过随机改变某些个体的部分基因,避免算法陷入局部最优解。 6. 终止条件判断:如果满足预定的终止条件(如达到一定的迭代次数或适应度达到预定值),则输出最优解;否则,返回步骤2继续迭代。 Matlab是一种用于数值计算、可视化以及编程的高性能语言和交互式环境,它广泛应用于工程计算、数据分析、算法开发等领域。Matlab提供的矩阵操作和内置函数库可以方便地实现遗传算法的编码、运算和结果可视化。在路径规划问题中,Matlab可以帮助开发者快速构建问题模型,实现算法逻辑,并对路径规划结果进行仿真和分析。 在本压缩包文件中,包含了一段名为“【路径规划】遗传算法求解仓库拣货距离最短优化问题【含Matlab源码 2154期】.mp4”的视频文件,该文件可能记录了整个仓库拣货路径优化问题的解决方案的设计、编码、运行以及结果展示。视频内容可能涵盖了遗传算法在路径规划中的具体应用,包括问题描述、算法设计、Matlab代码实现以及仿真实验等。通过观看视频,可以直观地了解算法的运行机制和路径优化的整个流程。 利用遗传算法进行仓库拣货路径优化是一个复杂但有效的过程,它能够通过模拟生物进化原理,找到较为理想的拣货路径,从而提高仓库作业效率,减少物流成本。同时,Matlab作为一种强大的数学计算和仿真工具,为路径优化问题的解决提供了便利的实现平台。
2025-08-04 01:07:44 2.84MB
1
三维空间车轨耦合动力学程序:基于Newmark-Beta法的车辆轨道耦合动力学MATLAB代码实现,已嵌入轨道不平顺激励。,根据翟书编写的三维空间车轨耦合动力学程序 通过newmark-beta法求解的车辆-轨道空间耦合动力学matlab代码 已在代码里面加入轨道不平顺激励使用即可,无需动脑 ,翟书编写;三维空间车轨耦合动力学程序;Newmark-beta法;车辆-轨道空间耦合动力学Matlab代码;轨道不平顺激励。,翟书编写的三维空间车轨耦合动力学程序——Newmark-beta法求解车辆轨道耦合动力学MATLAB代码
2025-07-30 10:48:01 889KB 数据仓库
1