基于人工智能的人脸识别系统的毕业论文,可对同学们的写论文作参考。随着人工智能技术的迅猛发展,人脸识别系统逐渐成为计算机视觉领域的重要研究方向。基于人工智能的人脸识别系统通过机器学习、深度学习等技术,可以实现对人脸的高效、准确识别,广泛应用于安全监控、金融、智能家居等领域。本论文将探讨基于人工智能的人脸识别系统的技术原理、算法选择、应用场景以及未来发展方向。
2024-10-16 19:22:18 3.88MB 人工智能 毕业设计
1
博文“基于flask+opencv+sklearn+tensorflow的人脸识别系统”对应的源代码,其中包括前端源代码和后端源代码。
2024-07-31 20:04:46 100KB flask opencv tensorflow tensorflow
1
【项目资源】:包含前端、后端、移动开发、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源等各种技术项目的源码。包括C++、Java、python、web、C#、EDA等项目的源码。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
2024-04-28 10:16:14 1MB 图像处理
1
一、项目主要技术 Python语言、dlib、OpenCV、Pyqt5界面设计、sqlite3数据库 本系统使用dlib作为人脸识别工具,dlib提供一个方法可将人脸图片数据映射到128维度的空间向量,如果两张图片来源于同一个人,那么两个图片所映射的空间向量距离就很近,否则就会很远。因此,可以通过提取图片并映射到128维空间向量再度量它们的欧氏距离是否足够小来判定是否为同一个人。 二、方法实现、实现步骤 1、实例化人脸检测模型、人脸关键点检测模型、人脸识别模型 2、电脑摄像头设备加载一对图片 3、分别获取图片中的人脸图片所映射的空间向量,即人脸特征值 4、计算特征向量欧氏距离,根据阈值判断是否为同一个人 dlib人脸特征检测原理 1、提取特征点:例: 2、将特征值保存 3、计算特征数据集的欧氏距离作对比,当误差小于一定阙值就判定为同一人。 其他学习项目: OpenCV+dlib人脸识别门禁管理系统Python语言、dlib、OpenCV、Pyqt5、sqlite3数据库 OpenCV+dlib人脸识别考勤管理系统Python语言、dlib、OpenCV
2024-04-11 11:23:16 29.89MB 毕业设计 opencv python 人脸识别
1
用python3实现基于深度学习的AI人脸识别系统,脚本可以直接运行(包括源码文件、数据文件) 用到技术:Flask + OpenCV-Python + Keras + Sklearn 压缩包中包括:照片样本采集源码、深度学习和训练源码、人脸识别相关源码、Flask实现人脸识别接口等。 通过浏览器上传图片,或者打开摄像头即可识别。
2024-04-08 15:09:37 147.6MB 深度学习 人工智能 python3
1
一、项目主要技术 Python语言、dlib、OpenCV、Pyqt5界面设计、sqlite3数据库 本系统使用dlib作为人脸识别工具,dlib提供一个方法可将人脸图片数据映射到128维度的空间向量,如果两张图片来源于同一个人,那么两个图片所映射的空间向量距离就很近,否则就会很远。因此,可以通过提取图片并映射到128维空间向量再度量它们的欧氏距离是否足够小来判定是否为同一个人。 二、方法实现、实现步骤 1、实例化人脸检测模型、人脸关键点检测模型、人脸识别模型 2、电脑摄像头设备加载一对图片 3、分别获取图片中的人脸图片所映射的空间向量,即人脸特征值 4、计算特征向量欧氏距离,根据阈值判断是否为同一个人 dlib人脸特征检测原理 1、提取特征点:例: 2、将特征值保存 3、计算特征数据集的欧氏距离作对比,当误差小于一定阙值就判定为同一人。 其他学习项目: OpenCV+dlib人脸识别门禁管理系统Python语言、dlib、OpenCV、Pyqt5、sqlite3数据库 OpenCV+dlib人脸识别考勤管理系统Python语言、dlib、OpenCV
2024-04-07 22:18:52 29.89MB opencv python 毕业设计 人脸识别
1
设计了一个基于苹果公司嵌入式操作系统iOS平台下的人脸识别系统。通过对基于Haar-like特征的AdaBoost人脸 检测算法的研究,实现了实时人脸检测。提出了一种改进的基于隐马尔科夫模型的人脸识别方法,此方法采用奇异值压缩 抽取人脸图像特征作为观察序列,减少了数据的存储量和计算量,解决了嵌入式系统中由于图像处理数据量大造成的低 效。实验结果证明,该系统检测速度快,实时性强,识别率高,可以作为iOS平台上其他类型人脸识别应用软件开发的基础
2024-01-11 21:52:13 1.29MB iOS平台 人脸检测
1
识别人脸、录入人脸、管理人脸在内的多项功能 (一)选择人脸图片识别 (二)人脸视频识别效果展示 (三)摄像头检测效果展示 深度学习:主要在人脸识别部分:人脸检测、人脸对齐、人脸表示均采用机器学习算法, 特征表示部分【基于ResNet深度卷积神经网络】实现 系统实现了集识别人脸、录入人脸、管理人脸在内的多项功能:包括通过选择人脸图片、视频、摄像头进行已录入人脸的实时识别;可通过图片和摄像头检测人脸并录入新的人脸;通过系统管理和更新人脸数据等功能,检测速度快、识别精度较高。
2023-12-05 10:59:58 62.1MB 毕业设计 python 深度学习 人脸识别
1
完整的MATLAB人脸识别系统(ORL人脸库,GUI框架).zip
2023-11-05 14:44:56 549KB MATLAB GUI 人脸识别
1
人脸识别--- ResNet 使用opencv和dlib构建人脸识别系统 安装dlib: 点安装dlib == 19.6.1 安装opencv:pip安装opencv-python 向下数据( ) dlib_face_recognition_resnet_model_v1.dat.bz2 mmod_human_face_detector.dat.bz2 shape_predictor_68_face_landmarks.dat.bz2
2023-04-30 11:19:49 7KB Python
1