实现人脸识别的考勤门禁系统可以分为以下步骤: 1. 采集人脸图像数据集:首先需要采集员工的人脸图像数据集,包括正面、侧面等多个角度的图像。可以使用MATLAB中的图像采集工具或者第三方库进行采集。 2. 预处理人脸图像数据:对采集到的人脸图像数据进行预处理,包括人脸检测、人脸对齐、人脸裁剪等操作。MATLAB提供了相关的图像处理工具箱,可以用于实现这些处理步骤。 3. 特征提取与特征匹配:使用人脸识别算法提取人脸图像的特征,比如使用人脸识别中常用的特征提取算法如Eigenfaces、Fisherfaces或者基于深度学习的算法。然后将员工的人脸数据与数据库中的人脸数据进行匹配,判断是否为注册员工。 4. 考勤记录与门禁控制:如果人脸匹配成功,系统可以记录员工的考勤时间,并且控制门禁系统进行开启。MATLAB可以与外部设备进行通信,实现门禁控制以及考勤记录功能。
2025-05-01 18:04:10 525KB MATLAB MATLAB人脸考勤系统
1
本系统采用YOLOv5+dlib实现佩戴口罩的人脸识别,在佩戴口罩的情况下也可以进行人脸识别。 关于环境搭建问题: 参考CSDN作者“炮哥带你学”的“利用Anaconda安装pytorch和paddle深度学习环境+pycharm安装---免额外安装CUDA和cudnn”这篇文章。数据集如何划分也可参考炮哥的文章。 环境搭建完成后在anaconda里面新建虚拟环境,将项目的依赖环境改为新建好的conda环境。新建虚拟的环境的目的是因为不同的项目依赖的库不一样,python的版本不一样,全部放在一起会比较乱。 在终端输入pip install -r requirements.txt下载相关依赖,如果某个包下载失败了,删除requirements.txt里面的该包,在anaconda里面单独下载,然后重新执行上面的命令。 本项目使用的版本为python3.6,最好使用相同的版本。
2025-04-25 09:45:53 629.96MB pytorch pytorch anaconda paddle
1
基于BP神经网络的人脸识别系统设计详解:包含Matlab源程序、图像数据与实验指南,基于BP神经网络的人脸识别系统设计,包含matlab源程序、原始图片数据和算法实验说明书。 采用matlab软件进行设计,基于BP神经网络对人脸进行识别。 ,基于BP神经网络的人脸识别系统设计; MATLAB源程序; 原始图片数据; 算法实验说明书; 算法训练和优化。,"Matlab基于BP神经网络的人脸识别系统设计与实验" 人脸识别技术作为计算机视觉领域的重要分支,在安全认证、智能监控等领域中发挥着日益重要的作用。BP(Back Propagation)神经网络,作为一种多层前馈神经网络,其通过反向传播算法进行学习和训练,适用于处理非线性问题,因此被广泛应用于人脸识别领域。 本文档系统地介绍了一种基于BP神经网络的人脸识别系统的设计。该系统的核心是利用Matlab软件开发的,它包含了完整的源程序、原始图片数据集以及详细的算法实验指南。通过这套系统的使用,开发者或研究者可以深入了解BP神经网络在人脸识别中的应用,并进行算法的训练和优化。 在文档中,首先对人脸识别系统的设计理念、系统架构以及BP神经网络的基本原理和工作过程进行了详细阐述。接着,文档提供了Matlab编写的源程序代码,这些代码不仅涉及到BP神经网络的初始化、训练和测试,还包括了数据预处理和结果输出等重要环节。此外,为了保证系统的有效性和准确性,文档还提供了一套高质量的原始图片数据集,这些图片数据是系统训练和识别的基础,也是系统性能评估的关键。 实验指南部分为使用者提供了全面的操作步骤和实验方法,使用户能够按照指南步骤顺利地完成系统的设计和实验。文档中不仅包含理论分析,还包括了丰富的实验案例和分析结果,帮助用户理解并掌握基于BP神经网络的人脸识别技术。 除了详细的文档和源代码,本压缩包文件还包括一些重要文件,例如:标题基于神经网络的人脸识别系统设计与实现摘要人脸.doc,这个文件概括了整个项目的主旨和研究目标,为理解整个系统设计提供了一个提纲挈领的视角。基于神经网络的人脸识别系统设计技术分析一引言.txt,该文件可能提供了对于技术背景、发展历程以及当前应用等方面的分析,帮助用户建立起对人脸识别技术的系统认识。 在视觉素材方面,文件列表中提供了1.jpg和2.jpg等图片文件,这些图片可能是用于系统测试的示例图片,或者是在文档中用来展示实验结果的图表。探索神经网络在人脸识别中的奥秘在数字世界中技术的.txt文件,可能包含对神经网络在人脸识别领域应用的深入探讨和展望。基于神经网络的人脸识别系统设计解析.txt文件,该文件可能是对整个系统设计和实施过程的详细解析,为用户提供了学习和借鉴的机会。 本套资料为基于BP神经网络的人脸识别系统设计提供了一个全面的解决方案。无论是对于学术研究还是实际应用,这都是一套宝贵的学习资源。
2025-04-20 15:03:38 166KB safari
1
基于人工智能的人脸识别系统的毕业论文,可对同学们的写论文作参考。随着人工智能技术的迅猛发展,人脸识别系统逐渐成为计算机视觉领域的重要研究方向。基于人工智能的人脸识别系统通过机器学习、深度学习等技术,可以实现对人脸的高效、准确识别,广泛应用于安全监控、金融、智能家居等领域。本论文将探讨基于人工智能的人脸识别系统的技术原理、算法选择、应用场景以及未来发展方向。
2024-10-16 19:22:18 3.88MB 人工智能 毕业设计
1
博文“基于flask+opencv+sklearn+tensorflow的人脸识别系统”对应的源代码,其中包括前端源代码和后端源代码。
2024-07-31 20:04:46 100KB flask opencv tensorflow tensorflow
1
【项目资源】:包含前端、后端、移动开发、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源等各种技术项目的源码。包括C++、Java、python、web、C#、EDA等项目的源码。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
2024-04-28 10:16:14 1MB 图像处理
1
一、项目主要技术 Python语言、dlib、OpenCV、Pyqt5界面设计、sqlite3数据库 本系统使用dlib作为人脸识别工具,dlib提供一个方法可将人脸图片数据映射到128维度的空间向量,如果两张图片来源于同一个人,那么两个图片所映射的空间向量距离就很近,否则就会很远。因此,可以通过提取图片并映射到128维空间向量再度量它们的欧氏距离是否足够小来判定是否为同一个人。 二、方法实现、实现步骤 1、实例化人脸检测模型、人脸关键点检测模型、人脸识别模型 2、电脑摄像头设备加载一对图片 3、分别获取图片中的人脸图片所映射的空间向量,即人脸特征值 4、计算特征向量欧氏距离,根据阈值判断是否为同一个人 dlib人脸特征检测原理 1、提取特征点:例: 2、将特征值保存 3、计算特征数据集的欧氏距离作对比,当误差小于一定阙值就判定为同一人。 其他学习项目: OpenCV+dlib人脸识别门禁管理系统Python语言、dlib、OpenCV、Pyqt5、sqlite3数据库 OpenCV+dlib人脸识别考勤管理系统Python语言、dlib、OpenCV
2024-04-11 11:23:16 29.89MB 毕业设计 opencv python 人脸识别
1
用python3实现基于深度学习的AI人脸识别系统,脚本可以直接运行(包括源码文件、数据文件) 用到技术:Flask + OpenCV-Python + Keras + Sklearn 压缩包中包括:照片样本采集源码、深度学习和训练源码、人脸识别相关源码、Flask实现人脸识别接口等。 通过浏览器上传图片,或者打开摄像头即可识别。
2024-04-08 15:09:37 147.6MB 深度学习 人工智能 python3
1
一、项目主要技术 Python语言、dlib、OpenCV、Pyqt5界面设计、sqlite3数据库 本系统使用dlib作为人脸识别工具,dlib提供一个方法可将人脸图片数据映射到128维度的空间向量,如果两张图片来源于同一个人,那么两个图片所映射的空间向量距离就很近,否则就会很远。因此,可以通过提取图片并映射到128维空间向量再度量它们的欧氏距离是否足够小来判定是否为同一个人。 二、方法实现、实现步骤 1、实例化人脸检测模型、人脸关键点检测模型、人脸识别模型 2、电脑摄像头设备加载一对图片 3、分别获取图片中的人脸图片所映射的空间向量,即人脸特征值 4、计算特征向量欧氏距离,根据阈值判断是否为同一个人 dlib人脸特征检测原理 1、提取特征点:例: 2、将特征值保存 3、计算特征数据集的欧氏距离作对比,当误差小于一定阙值就判定为同一人。 其他学习项目: OpenCV+dlib人脸识别门禁管理系统Python语言、dlib、OpenCV、Pyqt5、sqlite3数据库 OpenCV+dlib人脸识别考勤管理系统Python语言、dlib、OpenCV
2024-04-07 22:18:52 29.89MB opencv python 毕业设计 人脸识别
1
设计了一个基于苹果公司嵌入式操作系统iOS平台下的人脸识别系统。通过对基于Haar-like特征的AdaBoost人脸 检测算法的研究,实现了实时人脸检测。提出了一种改进的基于隐马尔科夫模型的人脸识别方法,此方法采用奇异值压缩 抽取人脸图像特征作为观察序列,减少了数据的存储量和计算量,解决了嵌入式系统中由于图像处理数据量大造成的低 效。实验结果证明,该系统检测速度快,实时性强,识别率高,可以作为iOS平台上其他类型人脸识别应用软件开发的基础
2024-01-11 21:52:13 1.29MB iOS平台 人脸检测
1