内容概要:本文档详细介绍了基于STM32的智能AI号脉系统的开发过程,旨在解决传统中医把脉依赖医师经验和难以量化脉象特征的问题。系统架构由中医脉诊传感器、STM32F407信号处理、AI脉象分析模块和LCD显示/APP反馈组成。关键硬件包括MPXV7002DP脉搏传感器、STM32F407主控芯片、128×64点阵OLED显示模块和HC-05蓝牙模块。核心代码采用C++面向对象设计,分为脉搏信号采集模块、AI脉象分析模块和用户交互模块。开发调试与优化要点涵盖信号采集优化、AI模型部署和诊断结果验证。技术亮点包括浮点运算单元加速、硬件级DMA传输、轻量化诊断模型和实时波形显示功能。; 适合人群:对嵌入式开发有一定了解,特别是熟悉STM32平台的开发者和技术爱好者。; 使用场景及目标:①了解中医脉诊传感器与STM32的结合应用;②掌握C++面向对象编程在嵌入式系统中的实现;③学习如何使用NanoEdge AI Studio生成轻量化的AI模型并部署到STM32上;④实现脉象数据的实时采集、分析和可视化。; 阅读建议:建议读者首先熟悉STM32的基本操作和C++编程基础,然后按照文档提供的模块化设计思路逐步实现各个功能模块。在实践中可以参考提供的完整工程代码和测试用例,确保每个环节都能正常工作。此外,读者应准备好必要的硬件设备和开发环境,如ST-Link调试器和Keil MDK等。
2025-10-30 23:00:00 24KB 嵌入式开发 STM32 AI医疗
1
内容概要:本文详细介绍了三相静止无功发生器(SVG)的仿真设计,涵盖其工作原理、控制策略和无功补偿机制。文中附带了一份31页的Word报告,帮助读者快速入门SVG的学习。报告详细解释了电压定向的双闭环控制策略,即直流电压外环和电流内环控制,并比较了正弦脉宽调制(SPWM)与空间矢量脉宽调制(SVPWM)两种调制方法对SVG交流侧输出电流谐波含量的影响。此外,文章还探讨了SVG通过调节交流侧输出电压和电流参数来实现动态无功补偿的方法,强调了仿真设计在减少实际设备调试难度和时间方面的重要作用。 适合人群:从事电力系统研究和技术开发的专业人士,尤其是关注无功补偿技术和SVG应用的研究人员和工程师。 使用场景及目标:适用于希望深入了解SVG工作原理和仿真设计的技术人员,旨在提升他们对SVG控制策略的理解,掌握无功补偿的实际操作技巧,以及评估不同调制方式的效果。 其他说明:通过仿真设计可以有效模拟真实电力系统的运行环境,提前发现并解决潜在问题,提高电网供电质量和稳定性。
2025-10-23 15:32:09 1.12MB SVG 脉宽调制
1
空间电压矢量脉宽调制技术SVPWM详解:五段式与七段式工作原理、实现过程及模块化搭建指南,空间电压矢量脉宽调制技术SVPWM:五段式与七段式工作原理、实现过程详解及模块化搭建、C集成实现指南,空间电压矢量脉宽调制技术SVPWM 五段式、七段式SVPWM工作原理和实现过程辅导。 有模块化搭建、代码实现和C集成的SVPWM模块模型实现。 提供对应的参考文献; ,空间电压矢量脉宽调制技术SVPWM; 五段式SVPWM工作原理; 七段式SVPWM工作原理; SVPWM实现过程; 模块化搭建SVPWM模块模型; 代码实现SVPWM模块模型; C集成SVPWM模块模型; 参考文献。,空间电压矢量脉宽调制技术详解:五七段式SVPWM工作原理及实现
2025-10-22 19:37:16 1.42MB
1
【技术博客】基于MATLAB Simulink的移相变压器仿真模型,模拟实现可调移相角度的变压器副边36脉波不控整流,MATLAB Simulink仿真模型实现可设置移相角度的变压器副边36脉波不控整流,Phase_Shift_T:基于MATLAB Simulink的移相变压器仿真模型,可实现-25°、-15°……25°的移相。 变压器副边实现36脉波不控整流,变压器网侧电压、阈侧电压以及移相角度可直接设置。 仿真条件:MATLAB Simulink R2015b ,核心关键词: 1. 移相变压器仿真模型 2. MATLAB Simulink 3. 移相 4. 36脉波不控整流 5. 网侧电压 6. 阈侧电压 7. 设置 8. MATLAB Simulink R2015b,MATLAB Simulink中实现宽范围移相与多脉波整流的变压器仿真模型
2025-10-15 09:31:02 3.38MB
1
龙脉NOX2读狗写狗工具是一款专业的硬件操作软件,专为龙脉NOX2设备设计,用于读取和写入特定内存区域的数据。该工具的源码由官方编译,确保了其稳定性和安全性。使用该工具时,用户需要提供应用程序标识以及用户密码,这是为了确保数据操作的合法性和安全性。通过合法的使用,用户可以对设备的0,1,2,3内存区域进行数据的读取和写入操作,实现对硬件信息的获取与修改。 工具的主要功能可以概括为以下几点: 1. 读取和写入内存:用户可以通过该工具读取或写入内存中的数据,这包括0,1,2,3四个内存区域。这种操作可以用于对设备进行程序更新、配置更改或者调试等。 2. 获取硬件信息:通过读取内存数据,用户可以获得设备的硬件相关信息。这有助于技术人员在进行故障诊断和硬件维护时,快速准确地了解设备状态。 3. 安全性要求:使用该工具需要正确的应用程序标识和用户密码,这既保护了工具的合法使用,也保证了操作的安全性,防止了未授权的访问和数据篡改。 作为一款软件/插件类工具,龙脉NOX2读狗写狗工具在相关行业有着实际应用价值。例如,在IT硬件维修、系统集成以及安全测试等领域,专业人员需要对特定硬件设备进行底层操作时,该工具将提供极大的便利。不过,值得注意的是,这类操作往往需要专业知识,不当使用可能会对硬件造成损害,因此只有具备相关知识和技能的人员才应操作使用。 由于该工具是官方源码编译而成,所以其兼容性和稳定性都较好。开发者对源码的掌握使得该工具能更好地满足特定硬件设备的需求。但是,这也意味着工具的使用和获取可能会受到一定的限制,保证了只有符合授权条件的用户能够使用该工具。 龙脉NOX2读狗写狗工具是一款适用于龙脉NOX2设备的专业读写操作软件。它通过官方编译的源码,为用户提供安全、稳定的操作环境,使得用户能够准确地读取和写入特定内存区域的数据,并获取硬件信息。该工具对提升硬件设备的操作效率和故障排查有着重要作用,但同时也强调了正确使用和维护硬件设备的重要性。
2025-10-05 20:42:51 8KB
1
**Simulink 12脉波整流器详解** Simulink是MATLAB软件环境中的一个强大工具,用于建立和仿真动态系统模型。在电力电子领域,12脉波整流器是一种广泛应用的电源转换设备,它能将交流电转换为直流电,同时通过增加脉冲数量来减小谐波含量,提高电能质量。本文将深入探讨如何使用Simulink搭建12脉波整流器模型,并理解其工作原理和关键组件。 12脉波整流器的基本结构包括两组6脉波整流桥,每组由六个二极管或晶闸管组成,分别连接到两个不同相位的交流电源输入。这样,每个半周期内,会有12个电流脉冲流过负载,形成12脉波的直流输出。 在Simulink中,我们可以使用“库浏览器”来选取必要的模块,如“电气库”中的二极管、电阻、电容、电压源等。以下是搭建12脉波整流器模型的主要步骤: 1. **创建电压源**:需要为每个相位创建一个交流电压源,可以使用“Sine Wave”模块来模拟正弦波输入,调整频率和幅值以匹配实际应用。 2. **构建整流桥**:使用“理想二极管”模块代表整流器中的二极管。每个整流桥需要6个二极管,按照正确的接线顺序连接,形成全波整流电路。 3. **连接二极管和电压源**:将每个整流桥的二极管与相应的交流电压源相连,确保电流只能在一个方向流动。 4. **并联两个整流桥**:将两组6脉波整流桥并联,这样它们的输出将在同一节点合并,形成12脉波输出。 5. **添加负载**:在12脉波直流输出端连接一个电阻或RLC负载,模拟实际应用中的负载条件。 6. **设置仿真参数**:配置仿真时间范围,确保涵盖一个完整的交流周期,以便观察所有12个脉冲。 7. **运行仿真**:点击“Run”按钮进行仿真,观察输出波形,分析整流器的工作特性。 通过分析仿真结果,我们可以理解12脉波整流器的关键特点,例如: - **降低谐波**:12脉波整流器相比于6脉波,其谐波成分显著减少,因为更多的脉冲使得谐波频率更高,更容易通过滤波器滤除。 - **平滑直流输出**:更多脉冲意味着更连续的直流输出,减少了电压波动,提高了系统稳定性。 - **效率优化**:12脉波整流器可以使用更低感抗的滤波器,从而提高整体系统效率。 在学习过程中,可以尝试改变参数,如电压源的相位差、二极管的开通延迟时间等,观察这些变化对整流器性能的影响。此外,还可以引入控制策略,如PWM(脉宽调制)来进一步改善输出品质。 Simulink提供了一个直观的平台,让初学者能够理解和模拟12脉波整流器的工作原理,为电力电子领域的深入学习打下坚实基础。通过不断实践和探索,可以掌握更多高级的电力转换系统设计技巧。
2025-10-05 10:45:48 12KB simulink
1
1 引言   在半导体电阻式气体传感器中,气敏芯体对温度非常敏感,在整个工作环境温度波动范围内温度噪声通常会完全掩盖气体浓度输出的有效信号。另外气体传感器大多利用化学反应性质测量气体浓度,化学性质通常与温度有关,为了获得响应特性,敏感芯体通常需要工作在特定温度,因而为气敏芯体提供恒定的工作温度环境显得非常有意义。   在电路设计理论里实现恒温控制的方式有很多,传感器的特殊应用决定了低功耗、高精度、高可靠性的分立模拟电路实现方案非常适合。PID脉宽控制恒温模拟电路具有非常好的控温精度,同时元器件简单且具有可靠的失效率参数,风险可控,非常适合航天产品的设计要求。   2 电路框图   传感
2025-09-29 13:57:10 570KB
1
《基于脉振高频电压注入的永磁同步电机无速度传感器控制》 在现代工业自动化领域,永磁同步电机(PMSM)因其高效率、高功率密度和良好的动态性能而被广泛应用。然而,在某些场合,如航空航天、电动汽车等,由于环境限制或成本考虑,无法安装传统的机械速度传感器。为解决这一问题,基于脉振高频电压注入的无速度传感器控制技术应运而生。 脉振高频电压注入法是一种无速度传感器控制策略,其基本思想是通过向电机的定子绕组中注入特定频率的高频信号,利用电机内部的电磁耦合效应来检测电机的转子位置和速度信息。这种方法的核心在于,高频信号会在电机内部产生一个附加的磁场分量,进而改变电机的电气特性。通过测量这些变化,可以推断出电机的实时状态。 在实现这一技术的过程中,首先需要理解高频电压注入的原理。"脉振高频电压注入法原理说明.pdf"这份文档详细解释了这一过程。它可能会涵盖以下几点: 1. 高频电压的生成:通常采用调制技术,如脉宽调制(PWM),将高频信号与基波电压相混合。 2. 信号注入:将高频信号注入到电机定子绕组中,形成瞬时的磁链波动。 3. 信号感应:转子运动导致的磁路变化会改变高频信号的感应效果,通过检测这一变化可以获取转子位置信息。 4. 信号处理:对感应到的高频信号进行滤波和解调,提取出转子速度信息。 "parameters.m"文件可能是控制算法中的参数设置,包括电机的电气参数(如电感、电阻、磁链等)、高频电压的幅值、频率和调制方式等。这些参数的选择直接影响到控制系统的稳定性和精度。 "运行说明.txt"文件可能包含了实验操作步骤和注意事项,比如如何配置MATLAB/Simulink环境,如何加载"FInjection_SVPWM_2018b.slx"模型,以及如何进行仿真和实际电机测试。Simulink模型是实现这种控制策略的工具,通过搭建包含高频电压注入模块的控制系统,可以模拟电机的运行并验证控制算法的性能。 "【参考文献】基于脉振高频电压注入的永磁同步电机无速度传感器控制.pdf"是深入研究该技术的重要资源,可能包含更深入的理论分析、实验结果和控制策略的优化方法。 基于脉振高频电压注入的永磁同步电机无速度传感器控制技术是一种先进的电机控制策略,涉及到信号注入、感应和处理等多个环节,通过合理设置参数和使用适当的控制算法,能够在没有速度传感器的情况下实现电机的精确控制。这项技术的应用对于提高系统的可靠性、降低成本和简化系统结构具有重要意义。
2025-09-14 20:57:29 1.03MB
1
内容概要:本文探讨了利用脉振高频电压信号注入法对永磁同步电机(PMSM)进行无位置传感器控制的仿真研究。文章基于袁雷《现代永磁同步电机控制原理及MATLAB》一书,详细介绍了PMSM模型的搭建过程,重点解决了低速启动时转子位置误差较大的问题。通过在MATLAB环境下构建仿真模型,将脉振高频电压信号注入到电机定子绕组中,根据电机响应估计转子位置,从而提高低速启动时的精度。文中还展示了具体的代码实现,并讨论了该方法的优点和局限性。 适合人群:从事电机控制领域的研究人员和技术人员,特别是关注PMSM无位置传感器控制及其低速性能优化的专业人士。 使用场景及目标:适用于希望深入了解PMSM无位置传感器控制技术的研究人员,旨在通过仿真手段优化低速启动时的转子位置检测精度,提升电机控制系统的稳定性与可靠性。 其他说明:尽管仿真结果显示了良好的效果,但在实际应用中仍需进一步验证和优化。此外,该方法在高频噪声或干扰较多的环境中可能存在局限性。
2025-09-14 20:49:28 606KB
1
基于脉振高频电压注入的永磁同步电机(PMSM)无感FOC技术,重点讨论了转子初始位置检测、带载起动和突加负载运行的实现方法。文中首先阐述了无感FOC技术的工作原理及其在现代电机控制中的重要性,随后深入分析了转子初始位置检测的具体方法——极性判断法,确保电机可以在任意初始位置下顺利启动并稳定运行。此外,文章还探讨了如何通过调整电压波形、频率和幅值来实现对电机负载状态的有效控制,从而满足工业生产的需求。最后,作者提供了相关的算法参考文献和仿真模型,帮助读者更好地理解和掌握这一技术。 适合人群:从事电机控制系统设计与开发的技术人员,尤其是对永磁同步电机无感FOC技术感兴趣的工程师和研究人员。 使用场景及目标:适用于需要深入了解和应用永磁同步电机无感FOC技术的研发项目,如工业自动化设备、电动汽车等领域。目标是提高电机系统的效率、可靠性和适应性。 其他说明:提供的仿真模型为纯手工搭建,具有较高的学习和参考价值,但仅限于学术研究和个人学习使用。
2025-09-14 20:46:12 317KB
1