使用逆强化学习进行扫描路径预测
PyTorch的官方实施, (CVPR2020,口头)
我们提出了第一个逆向强化学习(IRL)模型,以学习人类在视觉搜索过程中使用的内部奖励功能和策略。 观察者的内部信念状态被建模为对象位置的动态上下文信念图。 这些地图是由IRL获悉的,然后用于预测多个目标类别的行为扫描路径。 为了训练和评估我们的IRL模型,我们创建了COCO-Search18,COCO-Search18是目前最大的高质量搜索注视数据集。 COCO-Search18有10位参与者在6202张图像中搜索18个目标对象类别中的每一个,进行了约300,000个目标定向注视。 当在COCO-Search18上进行训练和评估时,无论是在与人类搜索行为的相似性还是搜索效率方面,IRL模型在预测搜索注视扫描路径方面均优于基线模型。
如果您正在使用此作品,请引用:
@InProceedings {
1