人工神经网络(ANN)是受生物神经元网络启发的计算模型,用于模拟人脑神经元之间的连接和信息传递。ANN的主要特点是它具有自适应性、非线性映射能力和并行处理能力。它由大量的处理单元(神经元)组成,这些神经元通过权重连接形成复杂的网络结构。 ANN的学习过程主要分为监督学习、无监督学习和强化学习。Rosenblatt提出的感知器学习定理是监督学习中的一个基础概念,它描述了如何通过调整权重来使网络正确分类或预测给定的输入。 多层感知器(MLP)网络是一种前馈神经网络,包含至少一个隐藏层,能够处理非线性可分问题。Kohonen网络,也称为自组织映射(SOM),是一种无监督学习网络,用于数据聚类和可视化,它通过竞争学习机制自我组织。Hopfield网络则是用于联想记忆和优化问题的反馈网络,其状态会在能量函数最小化的过程中达到稳定。 受限玻尔兹曼机(RBM)是用于特征学习和生成模型的无监督网络,它利用两层神经元间的相互作用进行采样。双向联想记忆网(BAM)是一种能够存储和检索序列信息的反馈网络,而Hopfield网主要用于解决优化问题和实现稳定的状态。RBM、BAM和Hopfield网在应用上主要区别在于它们处理数据的方式和目标问题的性质。 为了加速MLP网络的学习过程,可以采用批处理学习、动量法、学习率衰减、正则化和早停策略等技术,这些方法有助于收敛速度的提升和模型泛化性能的改善。 Grossberg的ART网络结合模拟退火方法,可以在学习和工作过程中提高网络的稳定性和鲁棒性,避免陷入局部最优。模拟退火算法模仿了固体冷却过程中原子状态变化的过程,通过引入随机性来全局搜索解决方案空间。 在智能合约分类问题中,ANN可以扮演关键角色。例如,可以采用RNN,特别是LSTM模型,来处理代码序列。LSTM通过其门控机制有效处理长时序依赖,适合处理代码中的上下文信息。将代码转化为抽象语法树(AST)并提取特征,如代码长度、变量数量等,再使用词向量方法如word2vec将代码片段编码为向量。这些向量作为LSTM的输入,经过训练后,模型可以预测代码的类别。 卷积神经网络(CNN)在处理网格状数据如图像时表现出色,其结构包括输入层、卷积层、池化层、激活函数层和全连接层。CNN通过卷积操作捕获局部特征,池化层减少计算量,全连接层进行分类决策。 在处理噪声方面,神经网络可能会受到数据噪声、训练噪声、网络结构噪声和算法噪声的影响。为了提高模型的稳健性,需要采取数据清洗、正则化、dropout等技术来减少噪声对模型性能的影响。 总结而言,人工神经网络是强大的机器学习工具,广泛应用于分类、回归、聚类和优化等任务。通过理解其基本原理、不同类型的网络结构以及噪声处理方法,可以更好地设计和优化神经网络模型以解决实际问题。在教育和考试环境中,掌握这些知识点是确保理解和应用神经网络的关键。
2025-05-06 00:47:29 13.71MB 神经网络
1
人工神经网络原理及应用》由朱大奇、史慧编著,科学出版社出版。该书是现代计算机科学技术精品教材之一,介绍了人工神经网络的基本原理及其应用。重点阐述了9种常见神经网络的结构组成、工作原理、设计方法及应用实例。 本书中心内容包括前馈型BP神经网络;反馈型Hopfield神经网络和双向联想记忆 BAM神经网络;局部逼近的CMAC小脑神经网络和径向基函数RBF神经网络;竞争学习的自组织SOM神经网络、对偶传播CPN神经网络、ART自适应谐振理论及量子神经网络。 本书可作为电子、自动化、仪器仪表、计算机及相关专业研究生教材,书中介绍的相关算法及应用实践,对相关理论研究者和工程技术人员也具有一定的指导意义。
2022-12-29 10:25:10 2.11MB 神经网络 原理 应用
1
pdf文件 图书 作者:高隽,机械出版社出版
2022-09-22 13:08:32 6.26MB 人工神经网络
1
人工神经网络原理与仿真实例第2版 教学课件 高隽 第4章 支持向量机及其学习算法.ppt
2022-05-29 19:06:47 835KB 算法 支持向量机 学习 文档资料
人工神经网络原理与仿真实例第2版 教学课件 高隽 第6章 随机神经网络及模拟退火算法.ppt
人工神经网络原理 英文版.doc
2022-05-11 09:11:23 5.77MB 神经网络
关于人工神经网络原理很好的ppt课件,对于初学者有很大的帮助。是人工神经网络原理与仿真实例第2版该书的配套资源
2021-12-08 10:45:25 2.16MB 神经网络 仿真实例
1
人工神经网络原理及应用(高清带目录).pdf 朱大奇 史慧 编著,一共10章,198页。 《人工神经网络原理及应用》由朱大奇、史慧编著,科学出版社出版。该书是现代计算机科学技术精品教材之一,介绍了人工神经网络的基本原理及其应用。重点阐述了9种常见神经网络的结构组成、工作原理、设计方法及应用实例。 资源目录: 第1章 人工神经网络的基础知识 第2章 BP误差反传神经网络 第3章 Hopfield反馈神经网络 第4章 BAM双向联想记忆神经网络 第5章 CMAC小脑神经网络 第6章 RBF径向基函数神经网络 第7章 SOM自组织特征映射神经网络 第8章 CPN对偶传播神经网络 第9章 ART自适应谐振理论 第10章 量子神经网络
2021-10-31 16:30:12 2.14MB 人工神经网络 神经网络 计算机
1
人工神经网络原理及应用》由朱大奇、史慧编著,科学出版社出版。该书是现代计算机科学技术精品教材之一,介绍了人工神经网络的基本原理及其应用。重点阐述了9种常见神经网络的结构组成、工作原理、设计方法及应用实例。
2021-08-06 16:14:11 2.15MB 算法 人工神经网络
1
主要内容包括:人工神经网络简介、单层前向网络及LMS学习算法、多层前向网络及BP学习算法、支持向量机及其学习算法、Hopfield神经网络与联想记忆、随机神经网络及模拟退火算法。竞争神经网络和协同神经网络。每章均给出了基于Matlab的仿真实例及练习。
2021-06-08 21:19:47 6.22MB 神经网络 智能信息处理
1