只为小站
首页
域名查询
文件下载
登录
K-NN位置检测技术在卡尔曼滤波和
人工神经网络
中的应用
RFID技术是确定对象位置的重要技术之一。 相对于RSSI振幅的校准曲线计算距离。 这项研究的目的是确定室内环境中移动物体的2D位置。 这项工作的重要性在于表明,与传统的KNN方法相比,使用
人工神经网络
加卡尔曼滤波进行定位更为准确。 建立室内无线传感网络,该网络具有战略性地定位的RFID发射器节点和带有RFID接收器节点的移动对象。 生成指纹图并部署K最近邻算法(KNN)以计算对象位置。 部署指纹坐标和在这些坐标处接收到的RSS值以建立
人工神经网络
(ANN)。 该网络用于通过使用在这些位置接收的RSS值来确定未知对象的位置。 发现使用ANN技术比KNN技术具有更好的对象定位精度。 使用ANN技术确定的对象坐标经过卡尔曼滤波。 结果表明,采用ANN + Kalman滤波,可以提高定位精度,并减少46%的定位误差。
2025-06-20 14:58:17
927KB
射频识别
RSSI
无线传感器网络
人工神经网络
1
人工神经网络
原理复习,包含核心内容,涵盖
人工神经网络
的基本知识点,考试稳过
人工神经网络
(ANN)是受生物神经元网络启发的计算模型,用于模拟人脑神经元之间的连接和信息传递。ANN的主要特点是它具有自适应性、非线性映射能力和并行处理能力。它由大量的处理单元(神经元)组成,这些神经元通过权重连接形成复杂的网络结构。 ANN的学习过程主要分为监督学习、无监督学习和强化学习。Rosenblatt提出的感知器学习定理是监督学习中的一个基础概念,它描述了如何通过调整权重来使网络正确分类或预测给定的输入。 多层感知器(MLP)网络是一种前馈神经网络,包含至少一个隐藏层,能够处理非线性可分问题。Kohonen网络,也称为自组织映射(SOM),是一种无监督学习网络,用于数据聚类和可视化,它通过竞争学习机制自我组织。Hopfield网络则是用于联想记忆和优化问题的反馈网络,其状态会在能量函数最小化的过程中达到稳定。 受限玻尔兹曼机(RBM)是用于特征学习和生成模型的无监督网络,它利用两层神经元间的相互作用进行采样。双向联想记忆网(BAM)是一种能够存储和检索序列信息的反馈网络,而Hopfield网主要用于解决优化问题和实现稳定的状态。RBM、BAM和Hopfield网在应用上主要区别在于它们处理数据的方式和目标问题的性质。 为了加速MLP网络的学习过程,可以采用批处理学习、动量法、学习率衰减、正则化和早停策略等技术,这些方法有助于收敛速度的提升和模型泛化性能的改善。 Grossberg的ART网络结合模拟退火方法,可以在学习和工作过程中提高网络的稳定性和鲁棒性,避免陷入局部最优。模拟退火算法模仿了固体冷却过程中原子状态变化的过程,通过引入随机性来全局搜索解决方案空间。 在智能合约分类问题中,ANN可以扮演关键角色。例如,可以采用RNN,特别是LSTM模型,来处理代码序列。LSTM通过其门控机制有效处理长时序依赖,适合处理代码中的上下文信息。将代码转化为抽象语法树(AST)并提取特征,如代码长度、变量数量等,再使用词向量方法如word2vec将代码片段编码为向量。这些向量作为LSTM的输入,经过训练后,模型可以预测代码的类别。 卷积神经网络(CNN)在处理网格状数据如图像时表现出色,其结构包括输入层、卷积层、池化层、激活函数层和全连接层。CNN通过卷积操作捕获局部特征,池化层减少计算量,全连接层进行分类决策。 在处理噪声方面,神经网络可能会受到数据噪声、训练噪声、网络结构噪声和算法噪声的影响。为了提高模型的稳健性,需要采取数据清洗、正则化、dropout等技术来减少噪声对模型性能的影响。 总结而言,
人工神经网络
是强大的机器学习工具,广泛应用于分类、回归、聚类和优化等任务。通过理解其基本原理、不同类型的网络结构以及噪声处理方法,可以更好地设计和优化神经网络模型以解决实际问题。在教育和考试环境中,掌握这些知识点是确保理解和应用神经网络的关键。
2025-05-06 00:47:29
13.71MB
神经网络
1
人工神经网络
课程结课word论文+matlab源码+ppt讲解
人工神经网络
课程结课word论文+matlab源码+ppt讲解,论文独创,网上重复率不超过10%,是个人硕士期间的研究项目,适合用来做人工神经元网络课程,机器学习课程,人工智能课程,机器人课程的结课论文或课程设计,内容包含matlab源代码,ppt讲解,word论文。也可以加以改进用来做本科或者硕士毕设。
人工神经网络
作为人工智能领域的重要分支,近年来得到了广泛的关注和应用。随着技术的发展,神经网络的理论和实践应用逐渐成为高等教育中的一个重要课题。本篇
人工神经网络
课程结课论文,详细地介绍了
人工神经网络
的基本原理、架构设计、算法应用以及相关的实验操作,旨在为机器学习、人工智能、机器人等课程提供一个全面的学术研究成果。 论文的研究主要集中在以下几个方面: 论文阐述了
人工神经网络
的历史发展和基本概念,包括神经元、网络拓扑结构、学习规则等基础知识。通过对早期模型和现代神经网络模型的比较分析,为读者提供了一个清晰的发展脉络,帮助理解神经网络的演变历程。 论文详细介绍了不同类型的神经网络模型,如前馈神经网络、卷积神经网络(CNN)、递归神经网络(RNN)、长短期记忆网络(LSTM)等,以及它们在图像识别、自然语言处理、语音识别等领域的应用实例。这些内容有助于读者深入理解神经网络的多样性和适应性。 接着,论文着重探讨了神经网络中的学习算法,特别是反向传播算法(Backpropagation)和梯度下降法(Gradient Descent),并分析了它们在训练过程中的优化技巧和改进策略。这部分内容对于理解神经网络的训练机制至关重要。 此外,论文还提供了一个实际的研究案例,包括了完整的Matlab源代码。该案例展示了如何使用Matlab这一强大的计算工具来实现一个特定的神经网络模型,并通过实验验证模型的性能。这对于学习者来说是一个难得的实践机会,可以帮助他们更好地掌握理论知识,并学会将理论应用于实践中。 论文还包含了PPT讲解,这是一种有效的教学辅助材料,可以用来进行课程讲解或自学。PPT讲解通常会包含关键概念的图解、算法步骤的流程图以及实验结果的可视化展示,这对于教师和学生理解复杂的神经网络概念非常有帮助。 本篇
人工神经网络
课程结课论文是一份具有较高学术价值和实用性的研究成果。它不仅适合用作硕士阶段的研究项目,也适合本科和硕士阶段的学生进行课程设计或毕业设计。通过对本篇论文的学习和研究,学生可以深入理解神经网络的各个方面,为未来在人工智能领域的研究和工作打下坚实的基础。
2025-04-24 20:56:14
6.42MB
机器人
matlab
人工智能
机器学习
1
Lyapunov函数——能量函数-清华大学--
人工神经网络
PPT
Lyapunov函数——能量函数 作为网络的稳定性度量 wijoioj:网络的一致性测度。 xjoj:神经元的输入和输出的一致性测度。 θjoj:神经元自身的稳定性的测度。
2024-12-20 00:30:30
1.19MB
1
人工神经网络
入门教材 蒋宗礼编
学习
人工神经网络
的很经典的入门教材,希望对大家有帮助
2024-10-10 11:58:52
2.93MB
人工神经网络
1
基准结构自振频率的
人工神经网络
识别
针对美国IASC-ASCE的结构健康监测科研组提出的基准结构进行结构自振频率识别研究.神经网络训练时使用的数据为有限元程序计算所得出,将有损伤结构在环境激励下某点的加速度响应,通过快速傅立叶变换得到的离散频率响应函数作为神经网络的输入;将损伤结构的自振频率作为神经网络的输出.通过对在不同噪声水平下训练的神经网络的识别结果进行分析比较,结果表明:应用
人工神经网络
进行结构自振频率识别是切实可行的.
2024-10-08 10:30:07
835KB
行业研究
1
基于BP
人工神经网络
的SmFeN永磁材料工艺-磁性能关系预测
基于BP
人工神经网络
的SmFeN永磁材料工艺-磁性能关系预测,叶金文,刘 颖,采用均匀设计的方法设计了HDDR工艺条件的4因素16水平的实验方案,建立了工艺参数与磁性能之间的神经网络数学模型,利用该模型结合�
2024-02-25 15:07:27
323KB
首发论文
1
融合粗糙集和
人工神经网络
的产品敏捷定制设计方法
为快速响应客户需求和提高产品定制效率,通过分析产品设计过程的特点,结合粗糙集理论和神经网络方法各自的优势,提出一种融合粗糙集和神经网络的产品敏捷定制设计新方法,将粗糙集和神经网络方法有机集成应用于产品设计过程。该方法中,运用粗糙集对设计要求进行约简,提炼有效的决策条件;在此基础上,采用神经网络方法构建不同设计阶段的设计要求与其对应的产品结构间的网络模型,快速确定产品结构形式。并将该方法成功应用于某卷板机的总体方案定制设计过程。这种方法为实现产品敏捷定制开发提供了一种新的解决思路和技术手段。
2024-02-24 23:56:25
474KB
敏捷定制设计
人工神经网络
知识约简
1
人工神经网络
-python for everyone(2nd) 英文无水印pdf 第2版
第二章 图像去噪原理与神经网络简介 9 在上图去噪框架中有几个需要注意的点,第一是分解的图片块的大小不是盲 目的, p p 大小取得不同,则最终去噪的效果也不尽相同,取图片块太小,当噪 声较大时,此时去噪的结果会产生更多的可能性。而加噪的过程是不可逆的,因 此这样一来学习将变得非常复杂,找到公式(2-5)中的逼近 -1 的 f 函数将变更加 困难。另外一方面,虽然理论上来说取更大的 p p 是更好的,但实际情况并不是 如此,图片越大计算量越大,所以一般需要实验后折中取值。为了分开学习降低 复杂度,所以我们得折中选取了一个合适我们去噪模型的尺寸。在这个方面,尺 寸大小对去噪效果的影响在文献[10]中已经做过比较,不再详细展开。另外一点需 要注意的是,图像拆分处理之后是如何聚合并还原成原图像大小的。实际上我们 可以这样理解,对于每一个分别去噪的图片块,经过一个处理函数从 p p 变成 q q ,最后将这些尺寸为 q q 的图片按在原图中像素的位置点重聚回去,如果有 很多不同的图片块具有重叠的像素位置,则对这些重复的位置采用加权求平均或 者高斯平均的方法算出最终聚合回原图变成 m nR 的去噪图像。在神经网络中则是 采用全连接层的方式还原成 m nR 的去噪图像,其整体思想也是拆分再聚合。 2.2
人工神经网络
20世纪 80年代,人工智能领域兴起了
人工神经网络
(Artificial Neural Network, ANN)的研究热潮,ANN 也被人们简称为神经网络。它是一种仿照生物学中的神 经网络结构而设计的类似的网络结构,有点类似于生物脑细胞中的响应过程,通 过网络拓扑结构模拟生物神经元细胞的连接方式,以大量的简单原件构成一个复 杂的网络,以其强大的并行计算能力,高效的自主学习能力和高容错性能力进行 智能化自适应学习的网络。是一种高度非线性的模拟生物神经系统的网络结构, 可以解决复杂非线性运算和逻辑运算的网络系统。 2.2.1 神经元 如图 2-3 所示,为一个生物神经元,主要有细胞核,树突、轴突、突触、髓鞘 等结构。我们知道生物的脑神经网络由众多神经元一一连接而形成网络,树突和 突触主要用来收集传递信息,轴突主要作用相当于放行兴奋信号,阻挡抑制电平 信号。神经元就像一个处理器,释放或抑制电平信号。
2024-02-15 11:57:51
2.57MB
denoise
1
基于GIS和
人工神经网络
的井下无线传感器网络定位数据修正方法研究
针对传感器节点在自身定位过程中,受煤矿井下巷道复杂环境因素的影响,导致定位结果不够精确的问题,利用GIS系统的地图管理功能和
人工神经网络
无需建立数学模型的特点,提出了一种基于GIS和
人工神经网络
的修正方法。实验结果表明:该方法对存在误差的节点坐标进行了有效的修正,从而提高了节点自身定位的精度。
2024-01-11 16:32:48
211KB
无线传感器网络
GIS
人工神经网络
1
个人信息
点我去登录
购买积分
下载历史
恢复订单
热门下载
云视通扫描工具.zip
YOLOv5 人脸口罩图片数据集
机械臂避障路径规划仿真 蚁群算法 三维路径规划
MATLAB之LSTM预测
android studio课程设计作业PPT+设计文档+可运行源代码+设计思路
QT自制精美Ui模板系列(一)桃子风格模板 - 二次开发专用
2019西门子杯六部十层电梯群控参考程序.zip
基于STM32的电子时钟设计
Microsoft Visual C++ 2015-2019 运行库合集,包含32位64位
2020年数学建模B题穿越沙漠全部代码全国赛二等奖.zip
voc车辆检测数据集(已处理好,可直接训练)
VideoDownloadHelper去除120分钟时间限制-高级版.zip
银行笔试 信息科技岗部分真题
java-spring-web-外文文献翻译40篇.zip
新型冠状病毒疫情_2020年东三省数学建模A题_论文展示
最新下载
最全的全国银行开户行
Marc数据采集器(国图MARC批量下载工具)
pb freeform报表实现英文换行自动行高.rar
gps坐标转百度坐标
百度(bd09),火星(GCJ-02),大地(wgs84)坐标系转换
BioMercatorV4.2.3
Tesseract中文语言包chi_sim.traineddata(3.0.4-3.05)
OPatch11.2.0.3.22-64位.rar
FlexRay源码(车载总线通讯)
TextClassification:基于scikit-learn实现对新浪新闻的文本分类,数据集为100w篇文档,总计10类,测试集与训练集1:1划分。分类算法采用SVM和Bayes,其中Bayes作为基线-源码
其他资源
WEBGL编程指南pdf
FLASH成品及素材
socketIMchatdemo
[MATLAB+R2016a神经网络设计应用27例][顾艳春][程序源代码]
opencv车牌识别xml文件下载
unity 跑酷源码
一个简易版的新闻应用
分水岭分割算法matlab实现
labview制作简易示波器
牛牛PHP实现源码(附教程)
聚类数指标matlab工具箱
大学计算机导论教案
FOC电机控制技术介绍(中文)
CS4230.pdf
批量生成二维码.rar
apache-maven-3.5.2-bin.zip
en_ITEPC_VA_Desktop_v40.zip
c#.net Bitmap类的基本使用方法
Android SDK build-tools 26.0.0
根据关键字查找文件,可查找(*.java,*.jsp,*.txt等等)文件
jsp在线考试系统论文
武汉大学陈世鸿全套软件工程课件
GSM,SIM800短信通讯程序