只为小站
首页
域名查询
文件下载
登录
岩质边坡结构面参数反演的免疫遗传算法
基于均匀设计、有限元法、
人工神经
网络和免疫遗传算法建立了新的岩质边坡结构面参数的反演方法.按照均匀设计要求,确定数值模拟方案;用有限元程序计算出相应的神经网络训练样本,建立边坡变形的神经网络预测模型,再利用免疫遗传算法进行反演分析,其中反演过程适应度的计算则采用已训练好的神经网络预测来替代有限元数值仿真,大大缩短了计算时间.通过实际工程的算例分析,反演结果比较理想.
2025-12-11 21:39:08
981KB
免疫遗传算法
人工神经网络
1
BP神经网络在高密度电法反演中的改进与应用
采用BP神经网络反演的方法,通过ANSYS数值模拟获取训练样本,克服了传统Res2dmod获取的训练样本误差大的缺点。将训练好的网络用于其他视电阻率数据的反演中,将反演后的数据和传统的二维反演软件Res2dinv的反演效果进行对比分析。表明BP
人工神经
网络训练误差达到一定精度后,能够克服传统线性反演的不足,最后结合工程实例说明BP神经网络反演的可行性。
2025-12-10 08:05:17
228KB
高密度电法
BP人工神经网络
非线性反演
1
人工神经
网络英文课件
人工神经
网络(ANN)是计算机科学与人工智能领域中的一个重要分支,它受到生物神经系统的启发,致力于模拟人脑的复杂计算过程。在这个全英文的研究生课程课件中,你将深入学习到
人工神经
网络的基础概念、架构、训练方法以及在实际问题中的应用。 一、基础概念
人工神经
网络是由大量的
人工神经
元构成的网络结构,每个神经元都有一定的输入和输出,它们通过连接权重相互交互。神经元模型通常基于Sigmoid、ReLU或Tanh等激活函数,用于非线性变换输入信号,使得网络能够处理更复杂的任务。 二、网络架构 神经网络有不同的架构,如前馈神经网络(Feedforward NN)、卷积神经网络(CNN)和循环神经网络(RNN)。前馈神经网络是最基本的形式,数据从输入层单向传递到输出层;CNN适用于图像处理,利用卷积层和池化层提取特征;RNN则适合处理序列数据,如自然语言,具有记忆功能。 三、训练方法 训练神经网络的核心是反向传播算法,通过梯度下降法优化损失函数,调整连接权重,使网络预测结果更接近实际值。此外,还有随机梯度下降(SGD)、动量优化、Adam等优化器,用于加速收敛和防止陷入局部最优。 四、激活函数 激活函数是神经网络的心脏,常见的有Sigmoid、ReLU、Leaky ReLU、ELU等。Sigmoid在两端饱和,可能导致梯度消失;ReLU解决了这个问题,但可能会产生“死亡ReLU”现象;Leaky ReLU和ELU是ReLU的改进版,避免了零梯度问题。 五、损失函数 损失函数衡量模型预测与真实值之间的差距,如均方误差(MSE)、交叉熵损失(Cross-Entropy)等。选择合适的损失函数对模型性能至关重要。 六、正则化与早停 为了防止过拟合,课程会介绍正则化技术,如L1和L2正则化,以及dropout方法。早停策略是在验证集上监控模型性能,当验证集损失不再下降时提前停止训练,防止过度拟合。 七、深度学习框架 课件可能还会涉及常用的深度学习库,如TensorFlow、PyTorch、Keras等,它们提供了便利的API来构建和训练神经网络模型。 八、应用领域
人工神经
网络广泛应用在图像识别、自然语言处理、语音识别、推荐系统、自动驾驶等多个领域。通过实际案例,你将了解如何设计并实施神经网络解决方案。 这个全英文的课件对于提升研究生的英文阅读能力和理解深度学习理论十分有益。通过深入学习,你不仅能够掌握
人工神经
网络的理论知识,还能培养解决实际问题的能力。
2025-10-12 18:45:49
3.74MB
人工神经网络
1
《
人工神经
网络的发展及其应用》.doc
人工神经
网络(Artificial Neural Network,ANN)是由众多简单处理单元相互连接构成的复杂网络,其灵感来源于人类大脑的结构和功能。
人工神经
网络的研究可以追溯到20世纪40年代初,经历了早期的兴起、多次高潮与低谷,以及近年来的稳步发展。
人工神经
网络产生的背景主要基于人类对智能本源的探索。从古至今,哲学家和自然科学家对于人类智能的探讨从未停歇。生物学家和神经学家通过对人脑的观察和研究,建立了神经元网络理论和神经系统结构理论。这些理论的建立为模拟人脑的智能活动提供了理论基础。随着科学的发展,人们意识到经典数学和物理学的线性框架无法完全解释客观世界的复杂性和非线性现象,因此非线性科学研究变得尤为重要。
人工神经
网络作为一种非线性网络模型,它的创立是科学技术发展的必然产物。
人工神经
网络的发展历程坎坷。M-P模型作为第一个描述脑信息处理过程的数学模型,为后续研究提供了基础。D.O.Hebb提出的突触联系可变假设为神经网络学习算法的建立提供了理论支撑。Rosenblatt提出的感知机模型,将神经网络研究带入了实际应用的阶段,尤其是模式识别和联想记忆领域。B.Windrow和E.Hoff提出的自适应线性单元进一步推动了神经网络在自适应滤波、预测和模式识别方面的应用。然而,Minsky和Papert对单层感知机的理论分析导致了神经网络研究的第一次低谷期。 此后,众多学者的研究成果为神经网络的发展注入了新活力。芬兰学者T.Kohonen提出的自组织映射理论,S.A.Grossberg的自适应共振理论,日本学者K.Fukushima提出的认知机模型,以及J.J.Hopfield提出的网络模型都为
人工神经
网络的发展做出了重大贡献。Hinton等人引入的模拟退火算法和D.E.Rumelhart等提出的误差反向传播算法,极大推动了神经网络学习方法的研究。
人工神经
网络的应用领域非常广泛。除了模式识别和联想记忆,还包括自然语言处理、图像处理、股票市场预测、医疗诊断和机器人技术等多个领域。神经网络在这些领域的应用中,能够模仿人类大脑处理信息的方式,识别模式并做出决策。神经网络的关键特性包括并行计算、自适应学习、容错性强和处理非结构化信息的能力。 未来,
人工神经
网络将继续发展。随着计算机硬件的提升和算法的优化,神经网络有望在更多领域取得突破性进展。量子计算、深度学习等新技术的发展也为神经网络带来了新的发展机遇。同时,神经网络在解释性、能效比等方面仍存在挑战,需要科学家们进一步深入研究。 随着人工智能技术的不断进步,
人工神经
网络已经成为实现复杂系统和模式识别的重要工具。它不仅在理论研究中具有重要地位,在实际应用中也展现了巨大的潜力和价值。通过不断的学习和进化,
人工神经
网络正逐步揭开人类智能奥秘的新篇章。
2025-09-03 10:43:45
24KB
1
人工神经
网络.ppt
人工神经
网络,简称ANN,是一种模仿生物神经网络结构和功能的计算系统,它由大量通过突触连接的神经元组成。
人工神经
网络的基本组成部分包括神经元、突触和学习算法。神经元是处理单元,负责接收信号、处理信号并输出信号;突触模拟生物神经系统的突触功能,负责神经元之间的连接,并通过权重值表示连接强度;学习算法则是网络自我调整权重的规则,使得网络能够通过学习来提高性能。 根据信息的流动方式,
人工神经
网络主要分为三类:前馈神经网络、自组织神经网络和反馈神经网络。前馈神经网络是信号单向流动的网络,没有反馈连接,是最早被提出的神经网络模型。自组织神经网络能够自动调整结构和参数,无需外界指导即可从输入数据中自行发现信息的内在规律。反馈神经网络则含有反馈回路,信息不仅向前流动,还可以反向流动,这类网络可以用来处理时间序列数据或进行记忆与预测任务。 前馈神经网络中的单层感知器是由Rosenblatt在1958年提出的,它是神经网络中最简单的一种形式,由一个输入层和一个输出层组成,中间无隐藏层,因此它只能解决线性可分问题。感知器的核心是权值和偏置项的组合,它将输入信号经过加权求和后,通过一个阈值函数转换成输出信号。学习规则则是感知器为了调整权值而制定的一系列规则,目的是为了使网络的输出与期望的输出相匹配。感知器的学习算法基于梯度下降,通过逐步修正权值来减小误差。 单层感知器虽然简单,但它为后来的多层神经网络和深度学习奠定了基础。多层感知器在单层感知器的基础上增加了隐藏层,通过增加网络的深度来提高处理复杂问题的能力。误差反传(BP)算法及其变种是训练多层感知器的主要方法之一,该算法通过反向传播误差并调整权重来减少输出误差。BP算法的核心在于通过链式法则对网络中的权重进行有效的梯度计算。 BP算法可以分为标准BP算法和改进的BP算法。标准BP算法在训练初期学习速度快,但当误差减小到一定程度后,学习速度会变得非常慢,甚至陷入局部最小值。因此,研究者提出了各种改进方法,如动量法、自适应学习率算法、使用正则化项等,旨在加快收敛速度、防止过拟合以及提高算法的泛化能力。
人工神经
网络的研究和应用涉及多个领域,包括模式识别、信号处理、机器翻译、自动驾驶等。随着计算能力的提升和大数据的发展,神经网络尤其是深度学习正在不断突破人类对智能化处理能力的认识,成为推动人工智能技术发展的重要力量。
2025-08-08 20:28:40
321KB
1
K-NN位置检测技术在卡尔曼滤波和
人工神经
网络中的应用
RFID技术是确定对象位置的重要技术之一。 相对于RSSI振幅的校准曲线计算距离。 这项研究的目的是确定室内环境中移动物体的2D位置。 这项工作的重要性在于表明,与传统的KNN方法相比,使用
人工神经
网络加卡尔曼滤波进行定位更为准确。 建立室内无线传感网络,该网络具有战略性地定位的RFID发射器节点和带有RFID接收器节点的移动对象。 生成指纹图并部署K最近邻算法(KNN)以计算对象位置。 部署指纹坐标和在这些坐标处接收到的RSS值以建立
人工神经
网络(ANN)。 该网络用于通过使用在这些位置接收的RSS值来确定未知对象的位置。 发现使用ANN技术比KNN技术具有更好的对象定位精度。 使用ANN技术确定的对象坐标经过卡尔曼滤波。 结果表明,采用ANN + Kalman滤波,可以提高定位精度,并减少46%的定位误差。
2025-06-20 14:58:17
927KB
射频识别
RSSI
无线传感器网络
人工神经网络
1
人工神经
网络原理复习,包含核心内容,涵盖
人工神经
网络的基本知识点,考试稳过
人工神经
网络(ANN)是受生物神经元网络启发的计算模型,用于模拟人脑神经元之间的连接和信息传递。ANN的主要特点是它具有自适应性、非线性映射能力和并行处理能力。它由大量的处理单元(神经元)组成,这些神经元通过权重连接形成复杂的网络结构。 ANN的学习过程主要分为监督学习、无监督学习和强化学习。Rosenblatt提出的感知器学习定理是监督学习中的一个基础概念,它描述了如何通过调整权重来使网络正确分类或预测给定的输入。 多层感知器(MLP)网络是一种前馈神经网络,包含至少一个隐藏层,能够处理非线性可分问题。Kohonen网络,也称为自组织映射(SOM),是一种无监督学习网络,用于数据聚类和可视化,它通过竞争学习机制自我组织。Hopfield网络则是用于联想记忆和优化问题的反馈网络,其状态会在能量函数最小化的过程中达到稳定。 受限玻尔兹曼机(RBM)是用于特征学习和生成模型的无监督网络,它利用两层神经元间的相互作用进行采样。双向联想记忆网(BAM)是一种能够存储和检索序列信息的反馈网络,而Hopfield网主要用于解决优化问题和实现稳定的状态。RBM、BAM和Hopfield网在应用上主要区别在于它们处理数据的方式和目标问题的性质。 为了加速MLP网络的学习过程,可以采用批处理学习、动量法、学习率衰减、正则化和早停策略等技术,这些方法有助于收敛速度的提升和模型泛化性能的改善。 Grossberg的ART网络结合模拟退火方法,可以在学习和工作过程中提高网络的稳定性和鲁棒性,避免陷入局部最优。模拟退火算法模仿了固体冷却过程中原子状态变化的过程,通过引入随机性来全局搜索解决方案空间。 在智能合约分类问题中,ANN可以扮演关键角色。例如,可以采用RNN,特别是LSTM模型,来处理代码序列。LSTM通过其门控机制有效处理长时序依赖,适合处理代码中的上下文信息。将代码转化为抽象语法树(AST)并提取特征,如代码长度、变量数量等,再使用词向量方法如word2vec将代码片段编码为向量。这些向量作为LSTM的输入,经过训练后,模型可以预测代码的类别。 卷积神经网络(CNN)在处理网格状数据如图像时表现出色,其结构包括输入层、卷积层、池化层、激活函数层和全连接层。CNN通过卷积操作捕获局部特征,池化层减少计算量,全连接层进行分类决策。 在处理噪声方面,神经网络可能会受到数据噪声、训练噪声、网络结构噪声和算法噪声的影响。为了提高模型的稳健性,需要采取数据清洗、正则化、dropout等技术来减少噪声对模型性能的影响。 总结而言,
人工神经
网络是强大的机器学习工具,广泛应用于分类、回归、聚类和优化等任务。通过理解其基本原理、不同类型的网络结构以及噪声处理方法,可以更好地设计和优化神经网络模型以解决实际问题。在教育和考试环境中,掌握这些知识点是确保理解和应用神经网络的关键。
2025-05-06 00:47:29
13.71MB
神经网络
1
人工神经
网络课程结课word论文+matlab源码+ppt讲解
人工神经
网络课程结课word论文+matlab源码+ppt讲解,论文独创,网上重复率不超过10%,是个人硕士期间的研究项目,适合用来做
人工神经
元网络课程,机器学习课程,人工智能课程,机器人课程的结课论文或课程设计,内容包含matlab源代码,ppt讲解,word论文。也可以加以改进用来做本科或者硕士毕设。
人工神经
网络作为人工智能领域的重要分支,近年来得到了广泛的关注和应用。随着技术的发展,神经网络的理论和实践应用逐渐成为高等教育中的一个重要课题。本篇
人工神经
网络课程结课论文,详细地介绍了
人工神经
网络的基本原理、架构设计、算法应用以及相关的实验操作,旨在为机器学习、人工智能、机器人等课程提供一个全面的学术研究成果。 论文的研究主要集中在以下几个方面: 论文阐述了
人工神经
网络的历史发展和基本概念,包括神经元、网络拓扑结构、学习规则等基础知识。通过对早期模型和现代神经网络模型的比较分析,为读者提供了一个清晰的发展脉络,帮助理解神经网络的演变历程。 论文详细介绍了不同类型的神经网络模型,如前馈神经网络、卷积神经网络(CNN)、递归神经网络(RNN)、长短期记忆网络(LSTM)等,以及它们在图像识别、自然语言处理、语音识别等领域的应用实例。这些内容有助于读者深入理解神经网络的多样性和适应性。 接着,论文着重探讨了神经网络中的学习算法,特别是反向传播算法(Backpropagation)和梯度下降法(Gradient Descent),并分析了它们在训练过程中的优化技巧和改进策略。这部分内容对于理解神经网络的训练机制至关重要。 此外,论文还提供了一个实际的研究案例,包括了完整的Matlab源代码。该案例展示了如何使用Matlab这一强大的计算工具来实现一个特定的神经网络模型,并通过实验验证模型的性能。这对于学习者来说是一个难得的实践机会,可以帮助他们更好地掌握理论知识,并学会将理论应用于实践中。 论文还包含了PPT讲解,这是一种有效的教学辅助材料,可以用来进行课程讲解或自学。PPT讲解通常会包含关键概念的图解、算法步骤的流程图以及实验结果的可视化展示,这对于教师和学生理解复杂的神经网络概念非常有帮助。 本篇
人工神经
网络课程结课论文是一份具有较高学术价值和实用性的研究成果。它不仅适合用作硕士阶段的研究项目,也适合本科和硕士阶段的学生进行课程设计或毕业设计。通过对本篇论文的学习和研究,学生可以深入理解神经网络的各个方面,为未来在人工智能领域的研究和工作打下坚实的基础。
2025-04-24 20:56:14
6.42MB
机器人
matlab
人工智能
机器学习
1
Lyapunov函数——能量函数-清华大学--
人工神经
网络PPT
Lyapunov函数——能量函数 作为网络的稳定性度量 wijoioj:网络的一致性测度。 xjoj:神经元的输入和输出的一致性测度。 θjoj:神经元自身的稳定性的测度。
2024-12-20 00:30:30
1.19MB
1
人工神经
网络入门教材 蒋宗礼编
学习
人工神经
网络的很经典的入门教材,希望对大家有帮助
2024-10-10 11:58:52
2.93MB
人工神经网络
1
个人信息
点我去登录
购买积分
下载历史
恢复订单
热门下载
麻雀搜索算法(SSA)优化bp网络
多目标优化算法(四)NSGA3的代码(python3.6)
Elsevier爱思唯尔的word模板.zip
画程(版本6.0.0.127)setup个人版
基于OpenCV的车牌号码识别的Python代码(可直接运行)
2019和2021年华为单板通用硬件笔试题及答案
基于蒙特卡洛生成电动汽车充电负荷曲线程序
云视通端口扫描器.rar
Microsoft Visual C++ 2015-2019 运行库合集,包含32位64位
基于STM32的电子时钟设计
cublas64_11.dll cublasLt64_11.dll cusolver64_11.dll
基于MATLAB的水果图像识别
刚萨雷斯《数字图像处理》第四版答案.pdf
房价预测的BP神经网络实现_python代码
拾荒者.exe同时ID扫描器IP扫描器
最新下载
激光原理 第六版全 周炳琨编著(清晰版)课本教材+习题解答
ANSYS Workbench芯片回流焊:温度循环热应力仿真分析录屏与案例分析
IP Messenger(飞鸽传书)2019最新源码.zip
Multisim & Ultiboard 12.0.1
Behavior Designer Intergrations and samples 第二部分
基于C++和Opencv的MFC图像处理对话框
win7自带桌面小工具-中国农历
Unity 线波 模拟心电图上下振幅 效果项目demo 波线速度,颜色和振幅都可以自定义调整 亲测好用
Beyond Compare 免费绿色免安装,下载即用
MixRamDisk 下载 MixRamDisk 免费下载
其他资源
dom4j-1.6.1.jar(免费下载)
c#自定义圆角panel
数字摄影测量_武大_张剑清_PPT&PDF
Sp保存List--登陆保存多个账号
twitter爬取代码
MFC谷歌离线地图
windows-usb数据监视器
仿一号店登录注册前端及后端实现源码.zip
cCompiler:c语言编译器,用lex和yacc工具完成词法分析与语法分析并生成语法树,C ++实现了语法树的解析并生成中间代码,生成中间代码的过程中实现了错误检测。之后利用python对中间代码进行处理并生成mips汇流编码并且可以成功在PCSpim(mips模拟器)上运行-源码
SX1280 demo代码
基于AD620的前级运放电路的设计
DatabaseClient.zip
多晶硅表面陷阱坑形貌对表面光反射率的影响
wl-micro-frontends:微型前端实用项目教程。基于vue3.0&qiankun2.0进阶版:https:github.comwl-uiwl-mfe-源码
VB 用datagrid显示数据库信息
高清彩版 ASP.NET Core MVC 2.0 Cookbook
html 5 微信开发刮刮卡刮刮乐手机实现,亲测安卓、iphone绝对都可用
2018年redis全套视频-讲解 实战
后台管理系统静态页面.zip下载
基于Qt的数据管理系统
通讯录管理系统sqlserver版
C++继承、派生 代码
thinkpad x220系列最新白名单V1.39(2014.2.4上传)测试可用
pwm控制驱动直流电机 可调速 可调转的方向
Android视频压缩(亲测有效)方便简单易用